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1 Notations and theoretical considerations

* A Bloch wavefunction characterized by a wavevector k is such that

ψk(r) = uk(r)ei2πk·r

where uk(r) is periodic, that is

uk(r + Rlatt) = uk(r)

where Rlatt is a vector of the real space lattice.

* Representation by plane waves

uk(r) =
∑

G

ck(G)ei2πG·r

ψk(r) =
∑

G

ck(G)ei2π(k+G)·r

* Normalisation
∑

G

|ck(G)|2 = 1

* For a spinor wavefunction, there is an additional variable, the spin σ that
can take two values, that is σ =↑ (spin up) or σ =↓ (spin down)
The following relations hold :

uk(r, σ) =
∑

G

ck(G, σ)ei2πG·r
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ψk(r, σ) =
∑

G

ck(G, σ)ei2π(k+G)·r

∑

σ

∑

G

|ck(G, σ)|2 = 1

2 Properties of the wavefunctions (scalar case)

* For ground-state wavefunctions, there is the Schrödinger equation

H |ψnk >= εnk|ψnk >

where
H is the Hamiltonian operator
n labels the state (or the band)
εnk is the eigenvalue

* As the wavevector labelling of an eigenstate comes from the property

ψk(r + Rlatt) = ei2πkRlattψk(r)

in which k can be replaced by k + Glatt where Glatt is any reciprocal space
lattice vector, we can choose the wavefunctions at k and k+Glatt to be equal, or
to make a linear combination of wavefunctions with the same energy. We intro-
duce the notation “L.C.” when linear combinations are allowed when equating
two wavefunction.

ψn(k+Glatt)(r)
L.C.
= ψnk(r)

When there is no specific reason to prefer a linear combination, the equality
relation will be used. This is a choice of “gauge”. Note that a phase factor
might be allowed in taking the linear combination.

* The k ↔ k + Glatt correspondence translates to

un(k+Glatt)(r) · e
i2πGlatt·r

L.C.
= unk(r)

cn(k+Glatt)(G −Glatt)
L.C.
= cnk(G)

* The time-reversal symmetry (non-magnetic case) of the Hamiltonian gives
the following relation

ψnk(r)
L.C.
= ψ∗

n(−k)(r)

unk(r)
L.C.
= u∗n(−k)(r)

cnk(G)
L.C.
= c∗n(−k)(−G)
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* For the k wavevectors that are half a reciprocal lattice vector (2k = Glatt),
there is a special relationship between coefficients of the wavefunction :

cnk(G)
L.C.
= cn(k−Glatt)(G + Glatt)

L.C.
= cn(−k)(G + Glatt)

L.C.
= c∗nk

(−G−Glatt)

That is, coefficients at G and −G − Glatt are related. This will allow to
decrease by a factor of 2 the storage space for these specific k points.

3 Properties of the wavefunctions (spinor case)

* One must distinguish two classes of Hamiltonians :

• the Hamiltonian is spin-diagonal

• the Hamiltonian mixes the spin components

In the first class, one finds usual non-spin-polarized, non-spin-orbit Hamil-
tonians, in which case the spin up-spin up and spin down-spin down parts of the
Hamiltonian are equal, as well as spin-polarized Hamiltonian when the magnetic
field varies in strength but not in direction.

In the second class, one finds Hamiltonians that include the spin-orbit split-
ting as well as non-collinear spin systems.

In the first class, the wavefunctions can be made entirely of either spin-up
components or spin-down components, and treated independently of those made
of opposite spin. This corresponds to nsppol = 2.

In the second class, one must stay with spinor wavefunctions. This corre-
sponds to nspinor = 2.

These two classes are mutually exclusive. The possibilities are thus :

nsppol nspinor
1 1 scalar wavefunctions
2 1 spin-polarized wavefunctions
1 2 spinor wavefunctions

4 Plane wave basis set sphere

* In order to avoid dealing with an infinite number of plane waves {ei2π(k+G)r}
to represent Bloch wavefunctions, one selects those with a kinetic energy lower
than some cut-off Ekin−cut. The set of allowed G vectors will be noted by
{Gk,Ekin−cut

}
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Glatt ∈ {G}k,Ekin−cut
if

(2π)2(Glatt + k)2

2
< Ekin−cut

Expressed in reduced coordinates :

(2π)2

2

∑

ij

(Gred
latt,i + k

red
i )Gmet

ij (Gred
latt,j + kred

j ) < Ekin−cut

* The kinetic energy cut-off is computed from the input variables ecut and
dilatmx , to give the effective value :

ecut eff = ecut ∗ (dilatmx) ∗ ∗2

* For ”time-reversal k-points” (2k = Glatt, see section 2), not all coefficients
must be stored. A specific storage mode, governed by the input variable istwfk
has been introduced for the following k points:

(

000
)

,

(

00
1

2

)

,

(

0
1

2
0

)

,

(

0
1

2

1

2

)

,

(

1

2
00

)

,

(

1

2
0
1

2

)

,

(

1

2

1

2
0

)

,

(

1

2

1

2

1

2

)

For these points, the number of G vectors to be taken into account, is
decreased by about a factor of 2.
For the G’s that are not treated, the coefficients cnk(G) can be recovered from
those that are treated, thanks to

cnk(G) = c∗nk(−G−Glatt)

* The number of plane waves is npw
For ipw = 1 · · ·npw, the reduced coordinates of G are contained in the array kg:

these are integer numbers







G
red
1 = kg(1,ipw)

G
red
2 = kg(2,ipw)

G
red
3 = kg(3,ipw)

This list of G vectors is computed in the routine kpgsph.f.

[To be continued : explain the time reversed k-point structure]

5 FFT grid and FFT box

* For the generation of the density from wavefunctions, as well as for the
application of the local part of the potential, one needs to be able to compute
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ψnk(r) or unk(r) for a 3D-mesh of r-points, extremely fast, from the values
cnk(G).

[note : spin up and spin down parts can be treated separately in this oper-
ation, so they do not need to be specified otherwise in this section 5.]

* The FFT algorithm starts from values of a function

z(j1, j2, j3) for j1 = 0 · · · (N1 − 1), j2 = 0 · · · (N2 − 1), j3 = 0 · · · (N3 − 1)

and compute fast the transformed

z̃(l1, l2, l3) for l1 = 0 · · · (N1 − 1), l2 = 0 · · · (N2 − 1), l3 = 0 · · · (N3 − 1)

with

z̃(l1, l2, l3) =
∑

j1,j2,j3

z(j1, j2, j3)e
i2π

(

j1l1
N1

+
j2l2
N2

+
j3l3
N3

)

* We want, on a FFT grid, the values of uk(r) for

rred
1 =

0

N1
,

1

N1
, · · ·

N1 − 1

N1

(

=
l1

N1

)

rred
2 =

0

N2
,

1

N1
, · · ·

N2 − 1

N2

(

=
l2

N2

)

rred
3 =

0

N3
,

1

N3
, · · ·

N3 − 1

N3

(

=
l3

N3

)

(the choice of N1, N2, N3 is not discussed here.)
Note that we do not want uk(r) everywhere : these specific values allow to

use the FFT algorithm. The effect of Gred
1 or Gred

1 +N1 (or any value of Gred
1

modulo N) will be similar.

*

uk(r) =
∑

G

ck(G)ei2πG·r

=
∑

G

ck(G)ei2π(Gred
1

rred
1

+Gred
2

rred
2

+Gred
3

rred
3

)

Let us represent uk(r) by the segment wf real (1 : 2, 1 : N1, 1 : N2, 1 : N3)
where the first index refer to the real or imaginary part and the three others to
the integer values l1 + 1, l2 + 1, l3 + 1

Let us map the ck(G) coefficients on a similar segment
wf reciprocal(1 : 2, 1 : N1, 1 : N2, 1 : N3)
with a similar meaning of wf reciprocal(1 : 2, j1 + 1, j2 + 1, j3 + 1):

j1 = mod(Gred
1 , N1)[⇒ j1 ∈ [0, N1 − 1]]

j2 = mod(Gred
2 , N2)

j3 = mod(Gred
3 , N3)
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Then :

wf real(·, l1 + 1, l2 + 1, l3 + 1)

=

N1−1
∑

j1=0

N2−1
∑

j2=0

N3−1
∑

j3=0

wf reciprocal(·, j1 + 1, j2 + 1, j3 + 1) × e
i2π(

j1l1
N1

+
j2l2
N2

+
j3l3
N3

)

This is, up to the array indexing convention, precisely the operation done by
the FFT algorithm.

* For FFT efficiency (minimisation of cache conflicts), the arrays wf real

and wf reciprocal are not dimensioned wf(2, N1, N2, N3), but wf(2, N4, N5, N6)
where
if N1 even, N4 = N1 + 1; if N1 odd, N4 = N1

if N2 even, N5 = N2 + 1; if N2 odd, N5 = N2

if N3 even, N6 = N3 + 1; if N3 odd, N6 = N3

6 Wavefunctions and spatial symmetries.

* If some spatial symmetry operation commutes with the Hamiltonian :

[H,St] = 0

then

H |ψ >= ε|ψ > ⇒ StH |ψ >= εSt|ψ >

⇒ H [St|ψ >] = ε[St|ψ]

St|ψ > is also an eigenvector, with the same eigenvalue as |ψ >.
However its wavevector is different :

ψnk(r + R) = ei2πkRψnk(r)

⇒ (Stψnk)(r + R) = ψnk((St)
−1(r + R))

= ψnk(
∑

β

S−1
αβ (rβ +Rβ − tβ))

= ψnk(
∑

β

S−1
αβ (rβ − tβ) +

∑

β

S−1
αβRβ)

= ψnk((St)
−1(r) +

∑

β

S−1
αβRβ)

(S−1
αβRβ must be a vector of the real space lattice if St leaves the lattice invariant)

= e
i2π

∑

αβ
kαS

−1

αβ
Rβ
ψnk((St)

−1(r))

= ei2πk
′
·R(Stψnk)(r)
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where (k′)α =
∑

β S
−1
βαkβ

For a vector in the reciprocal space

(k′)β = (St(k))β =
∑

β

S−1
βαkβ

i.e. the inverse transpose of Sαβ is used.
* The preceeding result means

ψn(S−1,tk)
L.C.
= (Stψnk)(r)

L.C.
= ψnk(

∑

β

S−1
αβ (rβ − tβ))

=⇒ un(S−1,tk)(r)e
i2π

∑

αβ
S

−1,t

αβ
kβrα L.C.

= e
i2π

∑

αβ
kαS

−1

αβ
(rβ−tβ)

× unk(
∑

β

S−1
αβ (rβ − tβ))

=⇒ un(S−1,tk)(r)
L.C.
= e

−i2π
∑

αβ
kαS

−1

αβ
tβ
unk(

∑

β

S−1
αβ (rβ − tβ))

=⇒
∑

G

cn(S−1,tk)(G)ei2πG·r L.C.
= e

−i2π
∑

αβ
kαS

−1

αβ
tβ

∑

G′

cnk(G′)e
i2π

∑

αβ
G′

αS
−1

αβ
(rβ−tβ)

=⇒ cn(S−1,tk)(
∑

α

G′

αS
−1
αβ )

L.C.
= e

−i2π
∑

αβ
(kα+G′

α)S−1

αβ
tβ
cnk(G′)

This formula allows to derive coefficients cn at one k point from these at a
symmetric k point.

7 Conversion of wavefunctions [routine wfconv.f]

* The aim is to derive the wavefunction corresponding to a set of parameters,
from the wavefunction corresponding to another set of parameters. This set of
parameters is made of :

• nspinor (1 if scalar wavefunction, 2 if spinor wavefunction)

• kpt (the k-point)

• kg (the set of plane waves, determined by Ekin−cut,G
met and k)

• istwfk (the storage mode)

* Changing nspinor :
- from nspinor=1 to nspinor=2: the scalar wavefunctions are used to generate
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two spinor wavefunctions

c(G) → c1(G, σ) =

{

c(G) (if σ =↑ )
0 (if σ =↓ )

→ c2(G, σ) =

{

0 (if σ =↑ )
c(G) (if σ =↓ )

- from nspinor=2 to nspinor=1: this is conceptually not well defined, as the
natural ”inverse” of the previous recipe

c1(G, σ) → c(G) = c1(G, ↑)

will not lead to a normalized wavefunction.
One state out of two must be ignored also.

Despite this criticism, this natural procedure is followed in wfconv.f.

* Changing kpt, from kpt1(k1) to kpt2(k2)
Suppose (no time-reversal use)

(kred
2 )α = (∆Gred)α +

∑

β

Sred
βα k

red
1,β [see listkk.f]

(Gred
2 )α = −(∆Gred)α +

∑

β

Sred
βα G

red
1,β

According to the results in sections 2 and 6,

cnk1
(G1) = e

−i2π
∑

α
(k1+G1)

red
α tred

α cnk2
(G2)

or equivalently

cnk2
(G2) = e

i2π
∑

α
(k1+G1)

red
α tred

α cnk1
(G1)

If the time-reversal symmetry is used, we have instead

(kred
2 )α = (∆Gred)α −

∑

β

Sred
βα k

red
1,β [see listkk.f]

(Gred
2 )α = −(∆Gred)α −

∑

β

Sred
βα G

red
1,β

which leads to

cnk2
(G2) = (ei2π

∑

α
(k1+G1)

red
α tred

α cnk1
(G1))

∗

The phase factor is computed in ph1d3d.f

The resulting function, at G1 is placed in a FFT box in sphere.f (iflag=1)
The conversion from G1 to G2 is made when reading the coefficients in the FFT
box, to place them in cnk2(G2), in sphere.f also (iflag= -1).

* The change of istwfk is accomplished when using sphere.f, as the repre-
sentation in the FFT box is a full representation, where all the non-zero coeffi-
cients are assigned to their G vector, even if they are the symmetric of another
coefficient.
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