
1

Alire: a library repository manager for
the open source Ada ecosystem

Alejandro R. Mosteo1,2

1 Instituto de Investigación en Ingeniería de Aragón (I3A)
amosteo@unizar.es,

Mariano Esquillor s/n, 50018, Zaragoza, Spain
2 Centro Universitario de la Defensa de Zaragoza (CUD)

Ctra. de Huesca s/n, 50090, Zaragoza, Spain

Abstract. Open source movements are main players in today’s software land-
scape. Communities spring around programming languages, providing compil-
ers, tooling and, chiefly, libraries built with these languages. Once a community
reaches a certain critical mass, management of available libraries becomes a point
of contention. Operating system providers and distributions often support but the
most significant or mature libraries so, usually, language communities develop
their own cross-platform software management tools. Examples abound with lan-
guages such as Python, OCaml, Rust, Haskell and others.
The Ada community has been an exception to date, perhaps due to its smaller
open source community. To advance in this direction, this work presents a work-
ing prototype tailored to the Ada compiler available to open source enthusiasts,
GNAT. This tool is designed from two main principles: zero-cost infrastructure
and a pure Ada implementation. Initially available for Linux-based systems, it
relies on the semantic versioning paradigm for dependency resolution and uses
Ada specification files to describe project releases and dependencies.

Keywords: Library Management, Dependency resolution, Open Source, Ada 2012

1 Introduction

“If I have seen further it is by standing on ye sholders of Giants” wrote Sir
Isaac Newton in a letter to Robert Hooke [9]. Believers in the virtues of open
source licenses may recognize the sentiment; in nowadays rapidly evolving
technological landscape, reuse of code is critical to adapt to new technologies,
avoid past errors, stay on top of vulnerabilities, and foster collaboration. In
the communities built around programming languages this can be seen in the
publishing of software under more or less permissive licenses [11], but free of
charge. Open source programmers want their code to be run and built upon.

However, the availability of code and simplicity of distribution, compared
to pre-Internet generalization, has brought with itself its own problems, such
as a difficulty to be aware of available libraries, obsolescence of code that be-
comes unmaintained (a form of bit rot [10]) and incompatibilities between ver-
sions of a same library, or among different libraries being used simultaneously.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

2

To address those problems, one of the most notable efforts in the open
source world are the different Linux distributions. Either based on distribution
of source code, like Gentoo [17], or of binaries, like Debian [2], these commu-
nities have since long dealt with the problem of packaging consistent systems
for different architectures. The difficulty of such task is captured in the depen-
dency or DLL hell expressions [6], and one of the most dreaded experiences is
ending in a broken configuration during an upgrade.

Programmers, however, do not all use the same distribution, nor even the
same operating system, since today they can cater to about half a dozen gen-
eralist operating systems. Given the polarizing nature of programming lan-
guages [15] it is then unsurprising that many languages have seen efforts aimed
at providing an easy way of distributing libraries for those languages, as we
shall discuss in Section 2. In some cases, like Rust [8], the tool for the distri-
bution of libraries is an integral effort of the team developing the language.

The Ada language, perhaps because of its ties to closed development and
today’s considered niche place in the language landscape [7], has not seen such
a tool appear (to the best of our knowledge), despite the notable amount of open
source libraries available [3]. This work presents a tool that could be a first step
in this direction, with the main contribution being the tool itself. In the techni-
cal aspect, the tool tries to appeal to the Ada programmer by using native Ada
code to describe releases and its dependencies, thus avoiding the need to learn
new formats. To use this information, the tool uses self-compilation to incor-
porate the required data into its catalog of libraries. Finally, as a byproduct, we
contribute a semantic versioning library3 that is used to describe dependencies
among releases.

The project started as an informal discussion4 under the name of Alire (from
Ada Library Repository), and this work reflects the views of the authors on how
a minimal tool that addressed the low-hanging problems of the open source
Ada community could be brought to life. The tool itself is termed alr5, in
the vein of other reputable command-line tools such as git, svn, etc., and to
distinguish it from the general project.

The paper is structured as follows: Section 2 examines the situation in other
languages and points the referents taken for this tool. Section 3 presents the
ideas adopted for the design of alr. Next, Section 4 presents details about
the implementation mechanisms underpinning the design. A brief discussion
follows on the open questions this design leaves and, lastly, concluding remarks
and future directions close the paper in Section 5.

3 https://bitbucket.org/aleteolabs/semver
4 https://github.com/mosteo/alire/issues
5 A monospace font is used throughout the paper to denote actual executable commands or

logical entities such as files.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://bitbucket.org/aleteolabs/semver
https://github.com/mosteo/alire/issues
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

2 Related Work

The problem of library distribution has been tackled in two main ways, namely
distribution of binaries and of source code. The former has the advantage of
speed for the user, because it saves the step of compilation. The latter allows
the complete tailoring of the building process to one’s environment, and re-
duces the work load and hardware requirements on maintainers. For purely
interpreted languages the only available way is the distribution of sources.

Once libraries are obtained, we see yet two possibilities: installation of
packages system-wide, as if they where integral parts of the platform, or local
installation in a confined or user sandbox (that sometimes can be the default
user environment).

In Python’s pip [13], for example, libraries are installed globally if run
as superuser. If run as a regular user, they will be installed in the user’s en-
vironment. These two options present to the user a default environment that
can become broken [6] when dependencies are improperly managed, and for
that reason it is recommended [13] to use a sandbox or virtual environment for
each development context (which in turn entails possible library duplication
in several virtual environments). Some packagers, like OPAM [18] or Nix [5],
avoid that duplication by using a common store where individual releases are
isolated (i.e., there is not a “current” version of any library).

When one inspects the many solutions out there, like Rust’s cargo, Python’s
pip and easy_install, OCaml’s opam, D’s dub, Haskell’s stackage and
cabal-install, to name a few, a few common traits arise. The backend
is usually some kind of database that in its simplest form is merely a set of
files under version control in a public repository or in dedicated servers. Sub-
mission of new libraries becomes then the merging of a pull request into the
stable branch of the catalog. Fetching of a library involves the download of a
file bundle or checkout of a particular commit.

The other salient aspect these tools address is dependency resolution. When
building a project with a complex set of dependencies, it may happen that two
(or more) subprojects depend on the same libraries with some version restric-
tions. From all the possible combinations, only one that satisfies all dependent
projects can be chosen, or if an incompatible request is made a resolution con-
flict appears. Again, a common approach is to use semantic versions [12] of
the form M.m.p, where M stands for major version (one that is backwards in-
compatible), m is the minor version (one that is backwards compatible within
the same major version) and p is a patch, a mere bug fix release that should
be API compatible with other M.m releases. These dependencies are usually
represented in some textual description of a release, like key-value lists, JSON,
XML, or the own language syntax when it is interpreted.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

4

3 Design objectives and basics of operation

For alr, after reviewing these solutions, the following decisions were taken
for a bare minimum working tool:

– The objective is to help develop software, but not to configure the system.
As such, it will not install compiled libraries, entirely avoiding any possi-
bility of breaking the user’s system.

– To avoid redundancy of code but also broken dependencies, OPAM’s ap-
proach is used in which every distinct library release is stored under a
unique name, although in the same caching folder.

– To not depend on private servers, the Alire catalog and code releases are
stored in public Version Control System (VCS) services such as GitHub,
BitBucket, etc., with which the open source community is used to work.

– New releases are incorporated into Alire by means of a pull request into
the catalog repository. Since this is a manual process, at this time Alire can
only be considered a curated system6.

– An indexed release is described using Ada code that is verified by means
of compiling it, relying only on a single specification file that is part of
the alr source code. The aim is to stay within the Ada realm as much as
possible. In its present form, the alr tool only requires familiarity with the
GNAT [14] compiler.

– Library developers should be minimally impacted for integration into Alire,
if at all. This is achieved ultimately by only requiring a GNAT project file
(GPR file) that could be created by Alire maintainers without bothering
library authors uninterested in this tool.

Ada was (again) a pioneer when compared with languages designed even
later by adopting the idea of library items [16] that can be submitted to the com-
piler independently. This concept, together with the well-defined dependency
and elaboration rules, has spared Ada developers another quagmire which is the
dependency-building tools such as autoconf, automake and CMake [1]. Given
that nowadays there is a single open source Ada compiler, namely GNAT in
its GPL and FSF editions, at this time alr relies on GNAT aggregate project
files to completely manage the building process, without the need to modify
the environment. This solution lets programmers use dependencies as usual,
merely “with-ing” their project file.

3.1 Components of the Alire project

Alire has adopted an initial zero-cost approach, which structures the project in
the following parts:

6 The same happens in other languages. For example, in the Haskell community the Stackage
project arose as a curated alternative to the cabal-install breakage-prone tool.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

5

Listing 3.1. Help screen of alr
Ada Library Repository manager
Usage : alr command [options] [arguments]

Valid commands:

build Upgrades and compiles current project
clean GPRclean current project
compile GPRbuild current project
get Fetches and optionally compiles a project
help Shows hopefully helpful information
init Creates a new project with alr metadata
lock Lock dependency versions
run Launch the current project executable
search Search a string in release names
update Updates alire catalog and project dependencies
version Shows alr compilation metadata

Use "alr help [command]" for more information about a command.

– The catalog of projects is a repository hosted under the name of alire. It
fulfills the same role as, e.g., the crates.io-index7 project in the Rust
community. It comprises the database of known projects and the minimal
Ada types needed to represent that information. This way, commits to its
repository should be for the most part, once development stabilizes, just
additions to the catalog.

– The command-line tool available to users to interact with the Alire catalog
is named alr, as is its own project repository. Again, this allows develop-
ment on the tool with minimal disturbance to the catalog. It fulfills the role
of the cargo8 tool for Rust.

– The code releases from third parties can be in any online repository, with
the implicit assumption that the longest lived a repository is, the better. Cur-
rent free offerings favored by developers are the usual suspects: GitHub,
BitBucket, GitLab, etc. Of course, forks of particular releases could be
made to ensure high availability.

3.2 Introduction to alr

The prototype being discussed in this work is available at BitBucket9. Once
installed and run without arguments, the user is greeted by the help screen
shown in Listing 3.1, which will not be unfamiliar to cargo or opam users.

Before diving into these commands, an explanation on the terminology be-
ing used (in the remainder of the paper and in the Alire source code) is in order
(see also Fig. 1):

7 https://github.com/rust-lang/crates.io-index
8 https://github.com/rust-lang/cargo
9 https://bitbucket.org/aleteolabs/alire

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://github.com/rust-lang/crates.io-index
https://github.com/rust-lang/cargo
https://bitbucket.org/aleteolabs/alire
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

Fig. 1. Entities in the Alire catalog.

– A project refers to what also is typically called a library in the software
world; e.g., GtkAda10, AWS11, etc.

– A milestone is a project name plus a semantic version; i.e., a particular
version of a project.

– A release is the actual materialization of a milestone, available from some-
where online (usually a VCS server). Internally, each project must provide
at its root a project_name.gpr file that builds the project.

The most straightforward function of alr is to retrieve a particular project
and build it. Projects can contain libraries, which are useful to other projects,
but also executables, in which case the compilation process will result in a
file ready to be run. This is achieved with the alr get <project> com-
mand. The result will be a folder containing the requested project, but also
its dependencies will be downloaded to the the dependency caching folder, so
compilation should immediately succeed.

Alternatively, alr can create new projects to start easily working within the
Alire ecosystem. This is achieved with the alr init [--bin|--lib]
<project> invocation. Initially the project will depend only on Alr itself,
for reasons explained in Section 4, but this dependency is not mandatory and
will typically be replaced by the user with any projects needed by the newly
created one.

Any project obtained by each of these two means can be called an alr-
enabled or aware project, since it contains a metadata file that allows alr to
perform its functions. Once within the folder tree of an alr-aware project, we
can use the rest of commands (see Fig. 2). The compile command launches
the gprbuild tool with a generated project file that makes dependencies
available. The update command refreshes the catalog and obtains if neces-
sary a compatible set of projects needed by the current one.
10 https://github.com/AdaCore/gtkada
11 https://github.com/AdaCore/aws

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://github.com/AdaCore/gtkada
https://github.com/AdaCore/aws
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

Fig. 2. Relationships among commands. Single-frame commands can be used anywhere in the
filesystem, whereas double-framed ones are to be used within an alr-enabled project.

There are also compound commands that group functions for common com-
binations: run will compile and then launch the resulting executable, whereas
buildwill ensure that dependencies are up to date to then compile the project.

The commands interrelations have been designed to guarantee success, in
the sense that compilation should always succeed if the requested dependencies
are valid. alr will detect the addition of new dependencies by the user and
fetch them before a new compilation.

To conclude this section, we show how dependencies are represented in a
just-created project. As advanced, this is done in a package specification that
can be compiled to verify its correctness, and which is initially generated by
alr:

Listing 3.2. Metadata file in an alr-enabled project.

with Alr.Project; use Alr.Project;

package Shiny_Project_Alr is

Working_Release : constant Release := Set_Root_Project (
"shiny_project",
Depends_On =>

At_Least_Within_Major ("alr", V ("1.0.0")));

end Shiny_Project_Alr;

The only dependency is on the Alr project itself, precisely so this file can
be compiled. Once the syntax of this file is correct this dependency can be re-
moved, since the user project itself does not need to compile this file (although
alr does, so it must remain compilable).

Restrictions on dependencies are described using high-level functions. This
way there is no possible confusion on what is being asked for. In the example,
we request any future version of Alr that is within the same major number,
hence backwards-compatible12. Listing 3.3 shows other restrictions on versions
that are currently available.

12 This is the caret “ˆ” operator in other semantic versioning implementations

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

8

Listing 3.3. Main declarations in the Semantic Versioning support library.
package Semantic_Versioning with Preelaborate is

subtype Version_String is String
with Dynamic_Predicate => (for all S of Version_String => S /= ’ ’);

type Version is private;
-- A version is a major, minor and patch number
-- Optionally it may include pre-release name and build metadata, e.g.:
-- 1.2.0-alpha+c3423fab

type Version_Set is private;
-- A collection of versions (usually a compatible subset)

function New_Version (Major : Natural;
Minor : Natural := 0;
Patch : Natural := 0;
-- Optional parts:
Pre_Release,
Build : String := "") return Version;

-- Refer to http://semver.org/ for the exact meaning of each part, but:
-- A change of major version implies API incompatibility
-- A change of minor version implies backwards compatible changes
-- A change of patch version implies fixes with no new functionality

function "<" (L, R : Version) return Boolean;
-- Refer to http://semver.org/ for the exact ordering. Most notably:
-- A version with pre-release tag is earlier than its regular version.
-- Build info is not taken into account to determine ordering.

function At_Least_Within_Major (V : Version) return Version_Set;
function At_Least (V : Version) return Version_Set;
function At_Most (V : Version) return Version_Set;
function Less_Than (V : Version) return Version_Set;
function More_Than (V : Version) return Version_Set;
function Exactly (V : Version) return Version_Set;
function Except (V : Version) return Version_Set;

function "and" (VS1, VS2 : Version_Set) return Version_Set;

function Is_In (V : Version; VS : Version_Set) return Boolean;
-- Checks membership

private

4 Implementation details

This section presents some lower level details on alr implementation, par-
ticularly those aspects that present a specific idiosyncrasy of the tool when
compared with its homologues for other languages.

GNAT is currently the only open source Ada compiler available, and its
project files are the preferred way to conveniently manage the building process.
For these reasons, alr takes advantage as much as possible of GNAT project
files, and in particular uses aggregate projects to select the dependencies to be
included in the compilation of a project.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

9

4.1 Alire-mandated files

For alr to be able to perform its project-specific commands (see Fig. 2), it
needs three critical files to be present13:

– myproject.gpr (henceforth the project file): this is a GPR project file
that must be able to build the project. If different scenarios are important
for the project, library authors can take into account that alr will set an
“ALIRE=True” external variable during compilation. This way, the project
file can define a specific scenario for Alire builds.
In practice, GNAT projects typically already have one or several project
files, so this is not a special requirement, but for the naming, that must
coincide with the project name. This enables users of the project to simply
use with "myproject.gpr" in their own project files.

– myproject_alr.ads (henceforth the metadata file): this file is used by
alr as a telltale that it is being run inside a project folder. It must contain
the project name and its milestone dependencies, as already shown in 3.2.
It is initially generated by alr init, or could be hand-crafted if needed.
It can also be regenerated on demand.

– myproject_alr.gpr (henceforth the environment file): this file is gen-
erated by alr to set up the environment paths required to find any projects
the current project depends on. It can also be used to work in the GNAT
GPS IDE.

Of these three files, the only one that is entirely the responsibility of the
project author (or maintainer) is the myproject.gpr one. Its contents are
arbitrary, as long as they succeed in building the library or executable. At a
minimum, they must point the compiler to the source files of the project. On
the other extreme, myproject_alr.gpr is regenerated by alr whenever
necessary to properly configure the building environment (namely, whenever
dependencies change or the file is not found). myproject_alr.ads lies in
the middle, since it is initially generated by alr but it must by tailored by the
developer to their needs to indicate their dependencies.

Finally, note that for the inclusion of a project into the Alire catalog, only
the project file is needed, since the contents of the metadata file will appear in
the Alire index itself (see Listing 4.1), and the environment file is regenerated
from that information.

4.2 Self-compilation of alr and project dependencies

A tool such this one is expected to have an up-to-date catalog, and also that the
tool itself is up-to-date. The catalog update could be achieved in several fash-
ions: parsing text files that contain some specific format, or loading a binary
13 In these descriptions, “myproject” is a placeholder for an actual project name.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

10

Listing 4.1. An example of library in the alr index with one dependency on another library.
with Alire.Index.Libhello;

package Alire.Index.Hello is

Name : constant Project_Name := "hello";
Repo : constant URL := "https://bitbucket.org/alire/hello.git";

V_1_0_1 : constant Release :=
Register_Git

(Project => Name,
Version => V ("1.0.1"),
Hosting => Repo,
Commit => "65725c20778875eef12b61a01b437120932965f3",
Depends_On => At_Least_Within_Major (Libhello.V_1_0_0));

-- Older release might follow

end Alire.Index.Hello;

database, for example. However, maintaining the tool up-to-date will involve
compiling it from updated sources and replace the current executable. Also,
incorporating the dependencies of a working project (parsing the _alr.ads
file) would need either a custom parser or compilation and processing with
ASIS [4].

As an alternative, alr solves all these necessities in a single and perhaps
uncommon way: whenever the need is detected, it recompiles itself incorporat-
ing the metadata file into the build (when one is not available, a default one is
used). Also, whenever a rebuild is triggered, an indexing file is generated that
depends on all Alire catalog files. This way all needed information is incorpo-
rated into alr without the need to parse any external files, since the compiler
does it itself.

After self-compiling, alr spawns a new instance of itself that is able to
detect that it is up to date. This is done by checking the following points (also
graphically depicted in Fig. 3):

1. That the running executable is the one in a canonical location hard-coded
into alr.

2. That there is no metadata file within reach14, hence no need to know the
dependencies of a particular project, or:

3. If there is a metadata file, its hash is compared to the one computed prior to
self-compilation and inclusion of such metadata file into the build, hence
ensuring the alr executable contains up-to-date dependencies of the cur-
rent project.

14 The metadata file is looked for in the root folder and in its immediate children

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

11

Fig. 3. Checks on self-consistency performed during alr start-up.

Once alr considers itself updated and with all needed information, it can
apply its dependency solver. For now, it is a straightforward deep-first, newest-
release-first search on the dependency tree rooted at the working project, that
will return the first valid combination of dependencies found.

4.3 Final example

The creation of new projects from templates or downloading of releases do not
really merit any special discussion, since they do not pose particular techno-
logical challenges. However, inspecting the filesystem after the issuing of an
alr get --compile hello command will allow to bring into focus ev-
erything that has been reported up to this point. This command simultaneously
fetches a project and its dependencies, generates the needed files and builds
the whole configuration. The project itself is a plain “Hello, world!” example
artificially split into having to depend on a library (libhello) that performs the
actual output to the terminal.

Fig. 4 shows the relevant parts of a filesystem in which such a command
were issued in the user’s home folder. From top to bottom, the following rele-
vant folders and files can be located:

– $XDG_CONFIG_HOME/alire/ is the canonical Alire configuration data
path, which currently is used to check out up-to-date versions of the tool.
Within, the alire/index/ folder contains the catalog files, and the most
recently built alr executable is found in alr/bin/alr.

– $XDG_CACHE_HOME/alire/ contains files that could be deleted with-
out critical consequences, as they are either downloaded or generated when
needed. Inside, there is the projects/ folder in which dependencies are
downloaded (in this case a particular release of the libhello dependency),
and the sessions/ folder that is used to store generated files for a rebuild
of alr.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

12

$HOME/
$XDG_CONFIG_HOME/

alire/
alire/

| index/
alr/

bin/
alr

$XDG_CACHE_HOME/
alire/

projects/
libhello_1.0.0_ce78e770/

sessions/
alr-index.ads
alr-session.ads
hello_alr.ads

hello_1.0.1_65725c20/
hello.gpr
hello_alr.ads
hello_alr.gpr

Fig. 4. Filesystem of a system using alr.

In this example, since hello is the current project, we find the following
files included in the build:

• alr-index.ads, generated to include all catalog files that are avail-
able in alire/index/.

• alr-session.ads, that contains the hash of the current metadata
file (hello_alr.ads in this example) and also depends on it.

• hello_alr.ads, which contains the project dependencies (that is,
project libhello).

– Finally, the folder containing the release of project hello. The project alr
is asked to get is not placed in the cache, but in the current folder, so the
user can have easy access to it and its build results.

To conclude, proper library versions during a build are selected in the gen-
erated environment file, as Listing 4.2 shows for this example.

Listing 4.2. The environment file is a GPR aggregate project file.
aggregate project Hello_Alr is

for Project_Files use ("hello.gpr"); -- Root project being compiled

for Project_Path use (".",
"/home/mosteo/.cache/alire/projects/libhello_1.0.0_ce78e770");

for External ("ALIRE") use "True"; -- This is an Alire build

end Hello_Alr;

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

13

4.4 Discussion

At the time of this writing, alr offers the basic commands to demonstrate that
distribution of Ada libraries is feasible using exclusively Ada tooling and free,
public repositories; at least for libraries simple enough to be entirely built from
GNAT project files. More advanced features could be built on top of this ba-
sic functionality that are clearly desirable: automated build tests and automatic
generation of platform packages are but two examples; also, including licens-
ing information and restrictions based on operating system or compiler version
could be considered to limit which libraries can be depended upon.

Given the presented design, compilation times of alr itself could be a
point of contention since such compilations happen every time the metadata
file changes (i.e., whenever dependencies are added or removed). To assess
that point, experimental runs were conducted for different catalog sizes. How-
ever, since only a few files are recompiled every time (session and metadata
files, and one body that uses them in alr), the impact is mostly limited to the
time it takes to redo the binding and linking. Times measured with a middle-
range15 computer are shown in table 1. Although not negligible, there is wiggle
room until the issue becomes a pressing bottleneck.

Indexed files
Releases per file 100 1000 10000

1 1.82 3.73 34.09

10 1.94 4.52 44.83

Table 1. Average times (in seconds) for 100 alr recompilations after metadata changes, for
different number of files in the catalog and releases per file. These times do not include an initial
full compilation, which takes longer. Compiler version was GNAT GPL 2017 using -j0 switch.

5 Conclusions

This work presented an experimental Ada tool, its underlying design and re-
quired infrastructure that facilitates easy reuse of third-party Ada projects. This
is achieved by indexing and tagging with a semantic version their code re-
leases in public repositories, which in turn enables the possibility of depen-
dency resolution and easy upgrades. The whole setup requires only a recent
GNAT Ada compiler and enables effortless downloading and compilation of
indexed projects.

The design is based around a metadata file which is itself written in Ada
and incorporated into the tool by recompilation triggered by the tool itself.
This process allows users and developers of the tool alike to remain within the
realm of pure Ada code.

Alire is available under an open source license to interested parties.
15 Intel® Core™ i3-2015 (four execution threads), 16GB RAM, SSHD disk.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

14

Aknowledgements

This work has been supported by projects ROBOCHALLENGE (DPI2016-76676-
R-AEI/FEDER-UE) and ESTER (CUD2017-00). The authors thank the regu-
lars at comp.lang.ada for insightful discussions.

References
1. Al-Kofahi, J., Nguyen, T.N., Kästner, C.: Escaping AutoHell: a vision for automated analysis

and migration of autotools build systems. In: Proceedings of the 4th International Workshop
on Release Engineering. pp. 12–15. ACM (2016)

2. Brenta, L., Leake, S.: Debian policy for Ada, https://people.debian.org/
~lbrenta/debian-ada-policy.html

3. Clearinghouse, A.I.: Ada free tools and libraries, http://www.adaic.org/
ada-resources/tools-libraries/

4. Colket, C.: Ada semantic interface specification (ASIS). ACM SIGAda Ada Letters (4), 50–
63 (1995)

5. Dolstra, E., Löh, A.: NixOS: A purely functional linux distribution. ACM Sigplan Notices
43(9), 367–378 (2008)

6. Eisenbach, S., Jurisic, V., Sadler, C.: Managing the evolution of .NET programs. In: Inter-
national Conference on Formal Methods for Open Object-Based Distributed Systems. pp.
185–198. Springer (2003)

7. Hamilton, D., Pape, P.: 20 years after the mandate. CrossTalk p. 15 (2017)
8. Matsakis, N.D., Klock II, F.S.: The rust language. ACM SIGAda Ada Letters 34(3), 103–104

(2014)
9. Newton, I., Turnbull, H.W., Scott, J.F.: The correspondence of Isaac Newton / edited by H.W.

Turnbull. Published for the Royal Society at the University Press Cambridge (1959)
10. Odersky, M., Moors, A.: Fighting bit rot with types (experience report: Scala collections). In:

LIPIcs-Leibniz International Proceedings in Informatics. vol. 4. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2009)

11. Peterson, C.: How I coined the term ‘open source’, https://opensource.com/
article/18/2/coining-term-open-source-software

12. Raemaekers, S., Van Deursen, A., Visser, J.: Semantic versioning versus breaking changes:
A study of the maven repository. In: Source Code Analysis and Manipulation (SCAM), 2014
IEEE 14th International Working Conference on. pp. 215–224. IEEE (2014)

13. Reitz, K., Schlusser, T.: The Hitchhiker’s Guide to Python: Best Practices for Development.
O’Reilly Media, Inc. (2016)

14. Schonberg, E., Banner, B.: The GNAT project: a GNU-Ada 9X compiler. In: Proceedings of
the conference on TRI-Ada’94. pp. 48–57. ACM (1994)

15. Stefik, A., Hanenberg, S.: The programming language wars: Questions and responsibilities
for the programming language community. In: Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software.
pp. 283–299. ACM (2014)

16. Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E., Leroy, P., Schonberg, E.: Ada
2012 Reference Manual. Language and Standard Libraries: International Standard ISO/IEC
8652/2012 (E), vol. 8339. Springer (2014)

17. Thiruvathukal, G.K.: Gentoo linux: the next generation of linux. Computing in science &
engineering 6(5), 66–74 (2004)

18. Tuong, F., Le Fessant, F., Gazagnaire, T.: OPAM: an OCaml package manager. In: SIGPLAN
OCaml Users and Developers Workshop (2012)

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://people.debian.org/~lbrenta/debian-ada-policy.html
https://people.debian.org/~lbrenta/debian-ada-policy.html
http://www.adaic.org/ada-resources/tools-libraries/
http://www.adaic.org/ada-resources/tools-libraries/
https://opensource.com/article/18/2/coining-term-open-source-software
https://opensource.com/article/18/2/coining-term-open-source-software
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Alire: a library repository manager for the open source Ada ecosystem

