
Performance Co-Pilot™
Programmer's Guide

Performance Co-Pilot™ Programmer's Guide
Maintained by:
The Performance Co-Pilot Development Team

 <pcp@groups.io>

 http://pcp.io
PERFORMANCE
CO-PILOT

Copyright © 2000, 2013 Silicon Graphics, Inc.
Copyright © 2013, 2015, 2016, 2018 Red Hat, Inc.

LICENSE

Permission is granted to copy, distribute, and/or modify this document under the terms of the Creative Commons Attribution-Share Alike, Version
3.0 or any later version published by the Creative Commons Corp. A copy of the license is available at http://creativecommons.org/licenses/by-
sa/3.0/us/

TRADEMARKS AND ATTRIBUTIONS

Silicon Graphics, SGI and the SGI logo are registered trademarks and Performance Co-Pilot is a trademark of Silicon Graphics, Inc.

Red Hat and the Shadowman logo are trademarks of Red Hat, Inc., registered in the United States and other countries.

Cisco is a registered trademark of Cisco Systems, Inc. Linux is a registered trademark of Linus Torvalds, used with permission. UNIX is a registered
trademark of The Open Group.

http://pcp.io
http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/

iii

Table of Contents
About This Guide ... x

What This Guide Contains ... x
Audience for This Guide .. x
Related Resources .. xi
Man Pages .. xi
Web Site .. xi
Conventions .. xi
Reader Comments ... xii

1. Programming Performance Co-Pilot ... 1
PCP Architecture .. 1

Distributed Collection .. 2
Name Space ... 3
Distributed PMNS ... 3
Retrospective Sources of Performance Metrics ... 4

Overview of Component Software ... 4
Application and Agent Development .. 5

PMDA Development ... 5
Overview ... 5
Building a PMDA ... 6

Client Development and PMAPI ... 6
Library Reentrancy and Threaded Applications .. 7

2. Writing a PMDA .. 8
Implementing a PMDA .. 8
PMDA Architecture .. 9

Overview ... 10
DSO PMDA ... 10
Daemon PMDA .. 11
Caching PMDA .. 12

Domains, Metrics, Instances and Labels .. 12
Overview ... 13
Domains .. 13
Metrics .. 14
Instances .. 17
Labels ... 20

Other Issues ... 23
Extracting the Information .. 23
Latency and Threads of Control .. 23
Name Space ... 24
PMDA Help Text .. 25
Management of Evolution within a PMDA .. 26

PMDA Interface .. 27
Overview ... 27
PMDA Structures .. 33

Initializing a PMDA .. 36
Overview ... 36
Common Initialization .. 36
Daemon Initialization ... 38

Testing and Debugging a PMDA ... 39
Overview ... 39
Debugging Information .. 40
dbpmda Debug Utility ... 41

Performance Co-Pilot™
Programmer's Guide

iv

Integration of a PMDA .. 41
Installing a PMDA .. 41
Removing a PMDA ... 44
Configuring PCP Tools .. 44

3. PMAPI--The Performance Metrics API ... 45
Naming and Identifying Performance Metrics .. 46
Performance Metric Instances .. 46
Current PMAPI Context ... 47
Performance Metric Descriptions ... 48
Performance Metrics Values ... 51
Performance Event Metrics ... 53

Event Monitor Considerations ... 56
Event Collector Considerations .. 57

PMAPI Programming Style and Interaction ... 58
Variable Length Argument and Results Lists ... 58
Python Specific Issues ... 59
PMAPI Error Handling .. 60

PMAPI Procedural Interface ... 60
PMAPI Name Space Services ... 61
PMAPI Metrics Description Services .. 64
PMAPI Instance Domain Services .. 65
PMAPI Context Services .. 66
PMAPI Timezone Services ... 73
PMAPI Metrics Services .. 74
PMAPI Fetchgroup Services ... 76
PMAPI Record-Mode Services .. 78
PMAPI Archive-Specific Services .. 82
PMAPI Time Control Services .. 84
PMAPI Ancillary Support Services .. 85

PMAPI Programming Issues and Examples ... 92
Symbolic Association between a Metric's Name and Value 93
Initializing New Metrics ... 94
Iterative Processing of Values ... 94
Accommodating Program Evolution ... 95
Handling PMAPI Errors ... 95
Compiling and Linking PMAPI Applications ... 97

4. Instrumenting Applications .. 98
Application and Performance Co-Pilot Relationship .. 99
Performance Instrumentation and Sampling .. 100
MMV PMDA Design ... 100
Memory Mapped Values API .. 101

Starting and Stopping Instrumentation ... 101
Getting a Handle on Mapped Values ... 103
Updating Mapped Values .. 104
Elapsed Time Measures .. 105

Performance Instrumentation and Tracing .. 106
Trace PMDA Design .. 106

Application Interaction ... 106
Sampling Techniques ... 107
Configuring the Trace PMDA .. 109

Trace API .. 110
Transactions ... 110
Point Tracing .. 111
Observations and Counters .. 111

Performance Co-Pilot™
Programmer's Guide

v

Configuring the Trace Library ... 112
A. Acronyms .. 114
Index ... 115

vi

List of Figures
1.1. PCP Global Process Architecture ... 2
1.2. Process Structure for Distributed Operation ... 3
1.3. Architecture for Retrospective Analysis .. 4
3.1. A Structured Result for Performance Metrics from pmFetch .. 52
3.2. Sample write(2) syscall entry point encoding ... 54
3.3. Result Format for Event Performance Metrics from pmFetch ... 55
4.1. Application and PCP Relationship .. 100
4.2. Memory Mapped Page Sharing .. 101
4.3. Trace PMDA Overview .. 107
4.4. Sample Duration Comparison .. 108
4.5. Sampling Intervals ... 109

vii

List of Tables
2.1. Variables to Control Behavior of Generic pmdaproc.sh Procedures 42
3.1. Context Components of PMAPI Functions .. 66
3.2. Time Control Functions in PMAPI ... 84
3.3. PMAPI Type Conversion ... 87
4.1. Selected Command-Line Options ... 110
4.2. trace.transact Metrics ... 110
4.3. trace.point Metrics ... 111
4.4. trace.observe Metrics ... 111
4.5. Environment Variables ... 112
4.6. State Flags ... 112
A.1. Performance Co-Pilot Acronyms and Their Meanings ... 114

viii

List of Examples
2.1. Simple PMDA as a DSO .. 11
2.2. Simple PMDA as a Daemon ... 12
2.3. __pmID_int Structure ... 15
2.4. pmdaMetric Structure ... 15
2.5. Trivial PMDA .. 16
2.6. Effect of Semantics on a Metric .. 16
2.7. pmdaInstid Structure ... 18
2.8. pmdaIndom Structure ... 18
2.9. __pmInDom_int Structure ... 18
2.10. Simple PMDA .. 19
2.11. Multi-dimensional Instance Domain Labels .. 20
2.12. pmLabel Structure ... 21
2.13. pmLabelSet Structure ... 21
2.14. Simple PMDA .. 22
2.15. pmns File for the Simple PMDA ... 24
2.16. Alternate pmns File for the Simple PMDA .. 25
2.17. Dynamic metrics pmns File for the Simple PMDA ... 25
2.18. Help Text for the Simple PMDA ... 25
2.19. Setting Values .. 27
2.20. Request Handling Callbacks in the Trivial PMDA ... 28
2.21. Request Handling Callbacks in the Simple PMDA .. 29
2.22. simple.numfetch Metric .. 29
2.23. simple.color Metric .. 30
2.24. simple.time Metric .. 30
2.25. simple.now Metric .. 30
2.26. simple_store in the Simple PMDA .. 31
2.27. simple.color and PM_ERR_INST Errors .. 32
2.28. PM_ERR_PMID Errors ... 32
2.29. PM_ERR_PERMISSION and PM_ERR_PMID Errors .. 32
2.30. pmdaInterface Structure Header .. 33
2.31. pmdaInterface Structure, Latest Version .. 34
2.32. pmdaExt Stucture .. 35
2.33. Initialization in the Trivial PMDA .. 36
2.34. Initialization in the Simple PMDA ... 37
2.35. main in the Simple PMDA .. 38
2.36. simple.numfetch in the Simple PMDA ... 40
2.37. Install Script for the Trivial PMDA .. 41
3.1. Metrics Sharing the Same Instance Domain ... 47
3.2. pmDesc Structure ... 48
3.3. pmUnits and pmDesc Structures .. 49
3.4. Help Text Flags .. 50
3.5. pmLabel and pmLabelSet Structures ... 51
3.6. pmValueBlock and pmValue Structures ... 51
3.7. pmValueBlock Structure ... 52
3.8. pmValueSet Structure ... 52
3.9. pmResult Structure ... 53
3.10. pmEventArray and pmEventRecord Structures .. 55
3.11. pmEventParameter Structure ... 55
3.12. Unpacking Event Records from an Event Metric pmValueSet .. 56
3.13. Dumping Values in Temporal Sequence .. 71
3.14. Replaying Interpolated Metrics .. 71

Performance Co-Pilot™
Programmer's Guide

ix

3.15. PMAPI Metrics Services .. 75
3.16. pmRecordHost Structure ... 80
3.17. pmLogLabel Structure ... 82
3.18. pmAtomValue Structure ... 86
3.19. Using pmPrintValue to Print Values ... 90
3.20. pmMetricSpec Structure ... 92
3.21. C Code Produced by pmgenmap Input ... 93
3.22. Initializing Metric Specifications .. 94
3.23. Iterative Processing .. 94
3.24. Adding a Metric .. 95
3.25. PMAPI Error Handling .. 96
4.1. Memory Mapped Value Instance Structures ... 102
4.2. Memory Mapped Value Metrics Structures .. 102
4.3. Memory Mapped Value Handles .. 104
4.4. Memory Mapped Value Updates .. 104
4.5. Memory Mapped Value Reports .. 105
4.6. Rolling-Window Sampling Technique ... 107

x

About This Guide

Table of Contents
What This Guide Contains ... x
Audience for This Guide .. x
Related Resources .. xi
Man Pages .. xi
Web Site .. xi
Conventions .. xi
Reader Comments ... xii

This guide describes how to program the Performance Co-Pilot (PCP) performance analysis toolkit.
PCP provides a systems-level suite of tools that cooperate to deliver distributed performance monitoring
and performance management services spanning hardware platforms, operating systems, service layers,
database internals, user applications and distributed architectures.

PCP is an open source, cross-platform software package - customizations, extensions, source code
inspection, and tinkering in general is actively encouraged.

“About This Guide” includes short descriptions of the chapters in this book, directs you to additional
sources of information, and explains typographical conventions.

What This Guide Contains
This guide contains the following chapters:

• Chapter 1, Programming Performance Co-Pilot, contains a thumbnail sketch of how to program the
various PCP components.

• Chapter 2, Writing a PMDA, describes how to write Performance Metrics Domain Agents (PMDAs)
for PCP.

• Chapter 3, PMAPI--The Performance Metrics API, describes the interface that allows you to design
custom performance monitoring tools.

• Chapter 4, Instrumenting Applications, introduces techniques, tools and interfaces to assist with
exporting performance data from within applications.

• Appendix A, Acronyms, provides a comprehensive list of the acronyms used in this guide, in the PCP
man pages, and in the release notes.

Audience for This Guide
The guide describes the programming interfaces to Performance Co-Pilot (PCP) for the following intended
audience:

• Performance analysts or system administrators who want to extend or customize performance
monitoring tools available with PCP

• Developers who wish to integrate performance data from within their applications into the PCP
framework

About This Guide

xi

This book is written for those who are competent with the C programming language, the UNIX or the
Linux operating systems, and the target domain from which the desired performance metrics are to be
extracted. Familiarity with the PCP tool suite is assumed.

Related Resources
The Performance Co-Pilot User's and Administrator's Guide is a companion document to the Performance
Co-Pilot Programmer's Guide, and is intended for system administrators and performance analysts who
are directly using and administering PCP installations.

The Performance Co-Pilot Tutorials and Case Studies provides a series of real-world examples of using
various PCP tools, and lessons learned from deploying the toolkit in production environments. It serves
to provide reinforcement of the general concepts discussed in the other two books with additional case
studies, and in some cases very detailed discussion of specifics of individual tools.

Additional resources include man pages and the project web site.

Man Pages
The operating system man pages provide concise reference information on the use of commands,
subroutines, and system resources. There is usually a man page for each PCP command or subroutine. To
see a list of all the PCP man pages, start from the following command:

 man PCPIntro

Each man page usually has a "SEE ALSO" section, linking to other, related entries.

To see a particular man page, supply its name to the man command, for example:

 man pcp

The man pages are arranged in different sections separating commands, programming interfaces, and so
on. For a complete list of manual sections on a platform enter the command:

 man man

When referring to man pages, this guide follows a standard convention: the section number in parentheses
follows the item. For example, pminfo(1) refers to the man page in section 1 for the pminfo command.

Web Site
The following web site is accessible to everyone:

URL Description

http://pcp.io PCP is open source software released under the GNU General Public
License (GPL) and GNU Lesser General Public License (LGPL)

Conventions
The following conventions are used throughout this document:

http://pcp.io

About This Guide

xii

Convention Meaning

${PCP_VARIABLE} A brace-enclosed all-capital-letters syntax indicates a variable that
has been sourced from the global /etc/pcp.conf file. These
special variables indicate parameters that affect all PCP commands,
and are likely to be different between platforms.

command This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures.

variable Italic typeface denotes variable entries and words or concepts being
defined.

user input This bold, fixed-space font denotes literal items that the user enters in
interactive sessions. (Output is shown in nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or directive line.

... Ellipses indicate that a preceding element can be repeated.

ALL CAPS All capital letters denote environment variables, operator names,
directives, defined constants, and macros in C programs.

() Parentheses that follow function names surround function arguments
or are empty if the function has no arguments; parentheses that
follow commands surround man page section numbers.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this document, contact the
PCP maintainers using either the email address or the web site listed earlier.

We value your comments and will respond to them promptly.

1

Chapter 1. Programming Performance
Co-Pilot

Table of Contents
PCP Architecture .. 1

Distributed Collection .. 2
Name Space ... 3
Distributed PMNS ... 3
Retrospective Sources of Performance Metrics ... 4

Overview of Component Software ... 4
Application and Agent Development .. 5

PMDA Development ... 5
Overview ... 5
Building a PMDA ... 6

Client Development and PMAPI ... 6
Library Reentrancy and Threaded Applications .. 7

Performance Co-Pilot (PCP) provides a systems-level suite of tools that cooperate to deliver distributed,
integrated performance management services. PCP is designed for the in-depth analysis and sophisticated
control that are needed to understand and manage the hardest performance problems in the most complex
systems.

PCP provides unparalleled power to quickly isolate and understand performance behavior, resource
utilization, activity levels and performance bottlenecks.

Performance data may be collected and exported from multiple sources, most notably the hardware
platform, the operating system kernel, layered services, and end-user applications.

 There are several ways to extend PCP by programming certain of its components:

• By writing a Performance Metrics Domain Agent (PMDA) to collect performance metrics from an
uncharted performance domain (Chapter 2, Writing a PMDA)

• By creating new analysis or visualization tools using documented functions from the Performance
Metrics Application Programming Interface (PMAPI) (Chapter 3, PMAPI--The Performance Metrics
API)

• By adding performance instrumentation to an application using facilities from PCP libraries, which
offer both sampling and event tracing models.

Finally, the topic of customizing an installation is covered in the chapter on customizing and extending
PCP service in the Performance Co-Pilot User's and Administrator's Guide.

PCP Architecture
This section gives a brief overview of PCP architecture. For an explanation of terms and acronyms, refer
to Appendix A, Acronyms.

 PCP consists of numerous monitoring and collecting tools. Monitoring tools such as pmval and
pminfo report on metrics, but have minimal interaction with target systems. Collection tools,
called PMDAs, extract performance values from target systems, but do not provide user interfaces.

Programming Performance Co-Pilot

2

Systems supporting PCP services are broadly classified into two categories:

Collector Hosts that have the PMCD and one or more PMDAs running to collect and export
performance metrics

Monitor Hosts that import performance metrics from one or more collector hosts to be
consumed by tools to monitor, manage, or record the performance of the collector
hosts

Each PCP enabled host can operate as a collector, or a monitor, or both.

Figure 1.1, “PCP Global Process Architecture” shows the architecture of PCP. The monitoring tools
consume and process performance data using a public interface, the Performance Metrics Application
Programming Interface (PMAPI).

 Below the PMAPI level is the PMCD process, which acts in a coordinating role, accepting requests from
clients, routing requests to one or more PMDAs, aggregating responses from the PMDAs, and responding
to the requesting client.

Each performance metric domain (such as the operating system kernel or a database management system)
has a well-defined name space for referring to the specific performance metrics it knows how to collect.

Figure 1.1. PCP Global Process Architecture

PMDA PMDA PMDAPMDA

pmcd

Monitor

Kernel
DBMS

Layered
service
XYZ

End-user
application

ABC

Monitor

PMAPI PMAPI

Distributed Collection
 The performance metrics collection architecture is distributed, in the sense that any monitoring tool may
be executing remotely. However, a PMDA is expected to be running on the operating system for which it
is collecting performance measurements; there are some notable PMDAs such as Cisco and Cluster that
are exceptions, and collect performance data from remote systems.

Programming Performance Co-Pilot

3

 As shown in Figure 1.2, “Process Structure for Distributed Operation”, monitoring tools communicate
only with PMCD. The PMDAs are controlled by PMCD and respond to requests from the monitoring tools
that are forwarded by PMCD to the relevant PMDAs on the collector host.

Figure 1.2. Process Structure for Distributed Operation

PMDA PMDA PMDAPMDA

pmcd

PMDA

Monitor Monitor Monitor

pmcd

Remote Host Local Host

The host running the monitoring tools does not require any collection tools, including PMCD, since all
requests for metrics are sent to the PMCD process on the collector host.

 The connections between monitoring tools and PMCD processes are managed in libpcp, below the
PMAPI level; see the PMAPI(3) man page. Connections between PMDAs and PMCD are managed by
the PMDA functions; see the PMDA(3) and pmcd(1) man pages. There can be multiple monitor clients
and multiple PMDAs on the one host, but there may be only one PMCD process.

Name Space
 Each PMDA provides a domain of metrics, whether they be for the operating system, a database manager,
a layered service, or an application module. These metrics are referred to by name inside the user interface,
and with a numeric Performance Metric Identifier (PMID) within the underlying PMAPI.

 The PMID consists of three fields: the domain, the cluster, and the item number of the metric. The domain
is a unique number assigned to each PMDA. For example, two metrics with the same domain number must
be from the same PMDA. The cluster and item numbers allow metrics to be easily organized into groups
within the PMDA, and provide a hierarchical taxonomy to guarantee uniqueness within each PMDA.

The Performance Metrics Name Space (PMNS) describes the exported performance metrics, in particular
the mapping from PMID to external name, and vice-versa.

Distributed PMNS
 Performance metric namespace (PMNS) operations are directed by default to the host or set of archives
that is the source of the desired performance metrics.

Programming Performance Co-Pilot

4

In Figure 1.2, “Process Structure for Distributed Operation”, both Performance Metrics Collection Daemon
(PMCD) processes would respond to PMNS queries from monitoring tools by referring to their local
PMNS. If different PMDAs were installed on the two hosts, then the PMNS used by each PMCD would
be different, to reflect variations in available metrics on the two hosts.

Although extremely rarely used, the -n pmnsfile command line option may be used with many PCP
monitoring tools to force use of a local PMNS file in preference to the PMNS at the source of the metrics.

Retrospective Sources of Performance Metrics
The distributed collection architecture described in the previous section is used when PMAPI clients are
requesting performance metrics from a real-time or live source.

The PMAPI also supports delivery of performance metrics from a historical source in the form of a PCP
archive log. Archive logs are created using the pmlogger utility, and are replayed in an architecture as
shown in Figure 1.3, “Architecture for Retrospective Analysis”.

Figure 1.3. Architecture for Retrospective Analysis

PCP Archive Log

Monitor

PMAPI

PCP Archive Log

Overview of Component Software
 Performance Co-Pilot (PCP) is composed of text-based tools, optional graphical tools, and related
commands. Each tool or command is fully documented by a man page. These man pages are named after
the tools or commands they describe, and are accessible through the man command. For example, to see
the pminfo(1) man page for the pminfo command, enter this command:

man pminfo

A list of PCP developer tools and commands, grouped by functionality, is provided in the following section.

Programming Performance Co-Pilot

5

Application and Agent Development

 The following PCP tools aid the development of new programs to consume performance data, and new
agents to export performance data within the PCP framework:

chkhelp Checks the consistency of performance metrics help database files.

dbpmda Allows PMDA behavior to be exercised and tested. It is an interactive debugger
for PMDAs.

mmv Is used to instrument applications using Memory Mapped Values (MMV). These
are values that are communicated with pmcd instantly, and very efficiently, using
a shared memory mapping. It is a program instrumentation library.

newhelp Generates the database files for one or more source files of PCP help text.

pmapi Defines a procedural interface for developing PCP client applications. It is the
Performance Metrics Application Programming Interface (PMAPI).

pmclient Is a simple client that uses the PMAPI to report some high-level system
performance metrics. The source code for pmclient is included in the distribution.

pmda Is a library used by many shipped PMDAs to communicate with a pmcd process.
It can expedite the development of new and custom PMDAs.

pmgenmap Generates C declarations and cpp macros to aid the development of customized
programs that use the facilities of PCP. It is a program development tool.

PMDA Development
A collection of Performance Metrics Domain Agents (PMDAs) are provided with PCP to extract
performance metrics. Each PMDA encapsulates domain-specific knowledge and methods about
performance metrics that implement the uniform access protocols and functional semantics of the PCP.
There is one PMDA for the operating system, another for process specific statistics, one each for
common DBMS products, and so on. Thus, the range of performance metrics can be easily extended by
implementing and integrating new PMDAs. Chapter 2, Writing a PMDA, is a step-by-step guide to writing
your own PMDA.

Overview

Once you are familiar with the PCP and PMDA frameworks, you can quickly implement a new PMDA with
only a few data structures and functions. This book contains detailed discussions of PMDA architecture
and the integration of PMDAs into the PCP framework. This includes integration with PMCD. However,
details of extracting performance metrics from the underlying instrumentation vary from one domain to
another and are not covered in this book.

A PMDA is responsible for a set of performance metrics, in the sense that it must respond to requests from
PMCD for information about performance metrics, instance domains, and instantiated values. The PMCD
process generates requests on behalf of monitoring tools that make requests using PMAPI functions.

You can incorporate new performance metrics into the PCP framework by creating a PMDA, then
reconfiguring PMCD to communicate with the new PMDA.

Programming Performance Co-Pilot

6

Building a PMDA

A PMDA interacts with PMCD across one of several well-defined interfaces and protocol mechanisms.
These implementation options are described in the Performance Co-Pilot User's and Administrator's
Guide.

Note

It is strongly recommended that code for a new PMDA be based on the source of one of the
existing PMDAs below the ${PCP_PMDAS_DIR} directory.

In-Process (DSO) Method

 This method of building a PMDA uses a Dynamic Shared Object (DSO) that is attached by PMCD,
using the platform-specific shared library manipulation interfaces such as dlopen(3), at initialization time.
This is the highest performance option (there is no context switching and no interprocess communication
(IPC) between the PMCD and the PMDA), but is operationally intractable in some situations. For example,
difficulties arise where special access permissions are required to read the instrumentation behind the
performance metrics (pmcd does not run as root), or where the performance metrics are provided by an
existing process with a different protocol interface. The DSO PMDA effectively executes as part of PMCD;
so great care is required when crafting a PMDA in this manner. Calls to exit(1) in the PMDA, or a library
it uses, would cause PMCD to exit and end monitoring of that host. Other implications are discussed in
the section called “Daemon PMDA”.

Daemon Process Method

Functionally, this method may be thought of as a DSO implementation with a standard main routine
conversion wrapper so that communication with PMCD uses message passing rather than direct procedure
calls. For some very basic examples, see the ${PCP_PMDAS_DIR}/trivial/trivial.c and
${PCP_PMDAS_DIR}/simple/simple.c source files.

The daemon PMDA is actually the most common, because it allows multiple threads of control, greater
(different user) privileges when executing, and provides more resilient error encapsulation than the DSO
method.

Note

Of particular interest for daemon PMDA writers, the ${PCP_PMDAS_DIR}/simple PMDA
has implementations in C, Perl and Python.

Client Development and PMAPI
Application developers are encouraged to create new PCP client applications to monitor, display, and
analyze performance data in a manner suited to their particular site, application suite, or information
processing environment.

PCP client applications are programmed using the Performance Metrics Application Programming
Interface (PMAPI), documented in Chapter 3, PMAPI--The Performance Metrics API. The PMAPI, which
provides performance tool developers with access to all of the historical and live distributed services of
PCP, is the interface used by the standard PCP utilities.

Programming Performance Co-Pilot

7

Library Reentrancy and Threaded Applications
 While the core PCP library (libpcp) is thread safe, the layered PMDA library (libpcp_pmda) is not. This
is a deliberate design decision to trade-off commonly required performance and efficiency against the less
common requirement for multiple threads of control to call the PCP libraries.

The simplest and safest programming model is to designate at most one thread to make calls into the PCP
PMDA library.

8

Chapter 2. Writing a PMDA

Table of Contents
Implementing a PMDA .. 8
PMDA Architecture .. 9

Overview ... 10
DSO PMDA ... 10
Daemon PMDA .. 11
Caching PMDA .. 12

Domains, Metrics, Instances and Labels .. 12
Overview ... 13
Domains .. 13
Metrics .. 14
Instances .. 17
Labels ... 20

Other Issues ... 23
Extracting the Information .. 23
Latency and Threads of Control .. 23
Name Space ... 24
PMDA Help Text .. 25
Management of Evolution within a PMDA .. 26

PMDA Interface .. 27
Overview ... 27
PMDA Structures .. 33

Initializing a PMDA .. 36
Overview ... 36
Common Initialization .. 36
Daemon Initialization ... 38

Testing and Debugging a PMDA ... 39
Overview ... 39
Debugging Information .. 40
dbpmda Debug Utility ... 41

Integration of a PMDA .. 41
Installing a PMDA .. 41
Removing a PMDA ... 44
Configuring PCP Tools .. 44

This chapter constitutes a programmer's guide to writing a Performance Metrics Domain Agent (PMDA)
for Performance Co-Pilot (PCP).

The presentation assumes the developer is using the standard PCP libpcp_pmda library, as documented
in the PMDA(3) and associated man pages.

Implementing a PMDA
 The job of a PMDA is to gather performance data and report them to the Performance Metrics Collection
Daemon (PMCD) in response to requests from PCP monitoring tools routed to the PMDA via PMCD.

An important requirement for any PMDA is that it have low latency response to requests from PMCD.
Either the PMDA must use a quick access method and a single thread of control, or it must have

Writing a PMDA

9

asynchronous refresh and two threads of control: one for communicating with PMCD, the other for
updating the performance data.

 The PMDA is typically acting as a gateway between the target domain (that is, the performance
instrumentation in an application program or service) and the PCP framework. The PMDA may extract
the information using one of a number of possible export options that include a shared memory segment or
mmap file; a sequential log file (where the PMDA parses the tail of the log file to extract the information);
a snapshot file (the PMDA rereads the file as required); or application-specific communication services
(IPC).

Note

The choice of export methodology is typically determined by the source of the instrumentation
(the target domain) rather than by the PMDA.

 Procedure 2.1, “Creating a PMDA” describes the suggested steps for designing and implementing a
PMDA:

Procedure 2.1. Creating a PMDA

1. Determine how to extract the metrics from the target domain.

2. Select an appropriate architecture for the PMDA (daemon or DSO, IPC, pthreads or single threaded).

3. Define the metrics and instances that the PMDA will support.

4. Implement the functionality to extract the metric values.

5. Assign Performance Metric Identifiers (PMIDs) for the metrics, along with names for the metrics
in the Performance Metrics Name Space (PMNS). These concepts will be further expanded in the
section called “Domains, Metrics, Instances and Labels”

6. Specify the help file and control data structures for metrics and instances that are required by the
standard PMDA implementation library functions.

7. Write code to supply the metrics and associated information to PMCD.

8. Implement any PMDA-specific callbacks, and PMDA initialization functions.

9. Exercise and test the PMDA with the purpose-built PMDA debugger; see the dbpmda(1) man page.

10. Install and connect the PMDA to a running PMCD process; see the pmcd(1) man page.

11. Where appropriate, define pmie rule templates suitable for alerting or notification systems. For more
information, see the pmie(1) and pmieconf(1) man pages.

12. Where appropriate, define pmlogger configuration templates suitable for creating PCP archives
containing the new metrics. For more information, see the pmlogconf(1) and pmlogger(1) man pages.

PMDA Architecture
 This section discusses the two methods of connecting a PMDA to a PMCD process:

• As a separate process using some interprocess communication (IPC) protocol.

• As a dynamically attached library (that is, a dynamic shared object or DSO).

Writing a PMDA

10

Overview
 All PMDAs are launched and controlled by the PMCD process on the local host. PMCD receives requests
from the monitoring tools and forwards them to the PMDAs. Responses, when required, are returned
through PMCD to the clients. The requests fall into a small number of categories, and the PMDA must
handle each request type. For a DSO PMDA, each request type corresponds to a method in the agent. For
a daemon PMDA, each request translates to a message or protocol data unit (PDU) that may be sent to
a PMDA from PMCD.

For a daemon PMDA, the following request PDUs must be supported:

PDU_FETCH Request for metric values (see the pmFetch(3) man page.)

PDU_PROFILE A list of instances required for the corresponding metrics in
subsequent fetches (see the pmAddProfile(3) man page).

PDU_INSTANCE_REQ Request for a particular instance domain for instance descriptions
(see the pmGetInDom(3) man page).

PDU_DESC_REQ Request for metadata describing metrics (see the
pmLookupDesc(3) man page).

PDU_TEXT_REQ Request for metric help text (see the pmLookupText(3) man
page).

PDU_RESULT Values to store into metrics (see the pmStore(3) man page).

The following request PDUs may optionally be supported:

PDU_PMNS_NAMES Request for metric names, given one or more identifiers (see
the pmLookupName(3) man page.)

PDU_PMNS_CHILD A list of immediate descendent nodes of a given namespace
node (see the pmGetChildren(3) man page).

PDU_PMNS_TRAVERSE Request for a particular sub-tree of a given namespace node
(see the pmTraversePMNS(3) man page).

PDU_PMNS_IDS Perform a reverse name lookup, mapping a metric identifier to
a name (see the pmNameID(3) man page).

PDU_ATTR Handle connection attributes (key/value pairs), such as client
credentials and other authentication information (see the
__pmParseHostAttrsSpec(3) man page).

PDU_LABEL_REQ Request for metric labels (see the pmLookupLabels(3) man
page).

Each PMDA is associated with a unique domain number that is encoded in the domain field of metric
and instance identifiers, and PMCD uses the domain number to determine which PMDA can handle the
components of any given client request.

DSO PMDA
 Each PMDA is required to implement a function that handles each of the request types. By implementing
these functions as library functions, a PMDA can be implemented as a dynamically shared object (DSO)
and attached by PMCD at run time with a platform-specific call, such as dlopen; see the dlopen(3) man

Writing a PMDA

11

page. This eliminates the need for an IPC layer (typically a pipe) between each PMDA and PMCD, because
each request becomes a function call rather than a message exchange. The required library functions are
detailed in the section called “PMDA Interface”.

A PMDA that interacts with PMCD in this fashion must abide by a formal initialization protocol so that
PMCD can discover the location of the library functions that are subsequently called with function pointers.
When a DSO PMDA is installed, the PMCD configuration file, ${PCP_PMCDCONF_PATH}, is updated
to reflect the domain and name of the PMDA, the location of the shared object, and the name of the
initialization function. The initialization sequence is discussed in the section called “Initializing a PMDA”.

As superuser, install the simple PMDA as a DSO, as shown in Example 2.1, “Simple PMDA as a DSO”,
and observe the changes in the PMCD configuration file. The output may differ slightly depending on
the operating system you are using, any other PMDAs you have installed or any PMCD access controls
you have in place.

Example 2.1. Simple PMDA as a DSO

 cat ${PCP_PMCDCONF_PATH}
Performance Metrics Domain Specifications

This file is automatically generated during the build
Name Id IPC IPC Params File/Cmd
root 1 pipe binary /var/lib/pcp/pmdas/root/pmdaroot
pmcd 2 dso pmcd_init ${PCP_PMDAS_DIR}/pmcd/pmda_pmcd.so
proc 3 pipe binary ${PCP_PMDAS_DIR}/linux/pmda_proc.so -d 3
linux 60 dso linux_init ${PCP_PMDAS_DIR}/linux/pmda_linux.so
mmv 70 dso mmv_init /var/lib/pcp/pmdas/mmv/pmda_mmv.so
simple 254 dso simple_init ${PCP_PMDAS_DIR}/simple/pmda_simple.so

As can be seen from the contents of ${PCP_PMCDCONF_PATH}, the DSO version of the simple PMDA is
in a library named pmda_simple.so and has an initialization function called simple_init. The domain
of the simple PMDA is 254, as shown in the column headed Id.

Note

For some platforms the DSO file name will not be pmda_simple.so. On Mac OS X it is
pmda_simple.dylib and on Windows it is pmda_simple.dll.

Daemon PMDA
A DSO PMDA provides the most efficient communication between the PMDA and PMCD. This approach
has some disadvantages resulting from the DSO PMDA being the same process as PMCD:

• An error or bug that causes a DSO PMDA to exit also causes PMCD to exit, which affects all connected
client tools.

• There is only one thread of control in PMCD; as a result, a computationally expensive PMDA, or worse,
a PMDA that blocks for I/O, adversely affects the performance of PMCD.

• PMCD runs as the "pcp" user; so all DSO PMDAs must also run as this user.

• A memory leak in a DSO PMDA also causes a memory leak for PMCD.

Consequently, many PMDAs are implemented as a daemon process.

Writing a PMDA

12

The libpcp_pmda library is designed to allow simple implementation of a PMDA that runs as a separate
process. The library functions provide a message passing layer acting as a generic wrapper that accepts
PDUs, makes library calls using the standard DSO PMDA interface, and sends PDUs. Therefore, you can
implement a PMDA as a DSO and then install it as either a daemon or a DSO, depending on the presence
or absence of the generic wrapper.

 The PMCD process launches a daemon PMDA with fork and execv (or CreateProcess on Windows).
You can easily connect a pipe to the PMDA using standard input and output. The PMCD process may also
connect to a daemon PMDA using IPv4 or IPv6 TCP/IP, or UNIX domain sockets if the platform supports
that; see the tcp(7), ip(7), ipv6(7) or unix(7) man pages.

 As superuser, install the simple PMDA as a daemon process as shown in Example 2.2, “Simple PMDA
as a Daemon”. Again, the output may differ due to operating system differences, other PMDAs already
installed, or access control sections in the PMCD configuration file.

Example 2.2. Simple PMDA as a Daemon

The specification for the simple PMDA now states the connection type of pipe to PMCD and the executable
image for the PMDA is ${PCP_PMDAS_DIR}/simple/pmdasimple, using domain number 253.

cd ${PCP_PMDAS_DIR}/simple
./Install
...
Install simple as a daemon or dso agent? [daemon] daemon
PMCD should communicate with the daemon via pipe or socket? [pipe] pipe
...
cat ${PCP_PMCDCONF_PATH}
Performance Metrics Domain Specifications

This file is automatically generated during the build
Name Id IPC IPC Params File/Cmd
root 1 pipe binary /var/lib/pcp/pmdas/root/pmdaroot
pmcd 2 dso pmcd_init ${PCP_PMDAS_DIR}/pmcd/pmda_pmcd.so
proc 3 pipe binary ${PCP_PMDAS_DIR}/linux/pmda_proc.so -d 3
linux 60 dso linux_init ${PCP_PMDAS_DIR}/linux/pmda_linux.so
mmv 70 dso mmv_init /var/lib/pcp/pmdas/mmv/pmda_mmv.so
simple 253 pipe binary ${PCP_PMDAS_DIR}/simple/pmdasimple -d 253

Caching PMDA
When either the cost or latency associated with collecting performance metrics is high, the PMDA
implementer may choose to trade off the currency of the performance data to reduce the PMDA resource
demands or the fetch latency time.

One scheme for doing this is called a caching PMDA, which periodically instantiates values for the
performance metrics and responds to each request from PMCD with the most recently instantiated (or
cached) values, as opposed to instantiating current values on demand when the PMCD asks for them.

 The Cisco PMDA is an example of a caching PMDA. For additional information, see the contents of the
${PCP_PMDAS_DIR}/cisco directory and the pmdacisco(1) man page.

Domains, Metrics, Instances and Labels
This section defines metrics and instances, discusses how they should be designed for a particular target
domain, and shows how to implement support for them.

Writing a PMDA

13

The examples in this section are drawn from the trivial and simple PMDAs. Refer to the
${PCP_PMDAS_DIR}/trivial and ${PCP_PMDAS_DIR}/simple directories, respectively,
where both binaries and source code are available.

Overview
 Domains are autonomous performance areas, such as the operating system or a layered service or a
particular application. Metrics are raw performance data for a domain, and typically quantify activity
levels, resource utilization or quality of service. Instances are sets of related metrics, as for multiple
processors, or multiple service classes, or multiple transaction types.

PCP employs the following simple and uniform data model to accommodate the demands of performance
metrics drawn from multiple domains:

• Each metric has an identifier that is unique across all metrics for all PMDAs on a particular host.

• Externally, metrics are assigned names for user convenience--typically there is a 1:1 relationship
between a metric name and a metric identifier.

• The PMDA implementation determines if a particular metric has a singular value or a set of (zero or
more) values. For instance, the metric hinv.ndisk counts the number of disks and has only one value
on a host, whereas the metric disk.dev.total counts disk I/O operations and has one value for
each disk on the host.

• If a metric has a set of values, then members of the set are differentiated by instances. The set of instances
associated with a metric is an instance domain. For example, the set of metrics disk.dev.total is
defined over an instance domain that has one member per disk spindle.

The selection of metrics and instances is an important design decision for a PMDA implementer. The
metrics and instances for a target domain should have the following qualities:

• Obvious to a user

• Consistent across the domain

• Accurately representative of the operational and functional aspects of the domain

For each metric, you should also consider these questions:

• How useful is this value?

• What units give a good sense of scale?

• What name gives a good description of the metric's meaning?

• Can this metric be combined with another to convey the same useful information?

As with all programming tasks, expect to refine the choice of metrics and instances several times during
the development of the PMDA.

Domains
Each PMDA must be uniquely identified by PMCD so that requests from clients can be efficiently routed
to the appropriate PMDA. The unique identifier, the PMDA's domain, is encoded within the metrics and
instance domain identifiers so that they are associated with the correct PMDA, and so that they are unique,
regardless of the number of PMDAs that are connected to the PMCD process.

Writing a PMDA

14

The default domain number for each PMDA is defined in ${PCP_VAR_DIR}/pmns/stdpmid. This
file is a simple table of PMDA names and their corresponding domain number. However, a PMDA does
not have to use this domain number--the file is only a guide to help avoid domain number clashes when
PMDAs are installed and activated.

The domain number a PMDA uses is passed to the PMDA by PMCD when the PMDA is launched.
Therefore, any data structures that require the PMDA's domain number must be set up when the PMDA is
initialized, rather than declared statically. The protocol for PMDA initialization provides a standard way
for a PMDA to implement this run-time initialization.

Tip

Although uniqueness of the domain number in the ${PCP_PMCDCONF_PATH} control file used
by PMCD is all that is required for successful starting of PMCD and the associated PMDAs, the
developer of a new PMDA is encouraged to add the default domain number for each new PMDA
to the ${PCP_VAR_DIR}/pmns/stdpmid.local file and then to run the Make.stdpmid
script in ${PCP_VAR_DIR}/pmns to recreate ${PCP_VAR_DIR}/pmns/stdpmid; this
file acts as a repository for documenting the known default domain numbers.

Metrics
 A PMDA provides support for a collection of metrics. In addition to the obvious performance
metrics, and the measures of time, activity and resource utilization, the metrics should also describe
how the target domain has been configured, as this can greatly affect the correct interpretation of
the observed performance. For example, metrics that describe network transfer rates should also
describe the number and type of network interfaces connected to the host (hinv.ninterface,
network.interface.speed, network.interface.duplex, and so on)

In addition, the metrics should describe how the PMDA has been configured. For example, if the PMDA
was periodically probing a system to measure quality of service, there should be metrics for the delay
between probes, the number of probes attempted, plus probe success and failure counters. It may also be
appropriate to allow values to be stored (see the pmstore(1) man page) into the delay metric, so that the
delay used by the PMDA can be altered dynamically.

Data Structures

 Each metric must be described in a pmDesc structure; see the pmLookupDesc(3) man page:

typedef struct {
 pmID pmid; /* unique identifier */
 int type; /* base data type */
 pmInDom indom; /* instance domain */
 int sem; /* semantics of value */
 pmUnits units; /* dimension and units */
} pmDesc;

This structure contains the following fields:

pmid A unique identifier, Performance Metric Identifier (PMID), that differentiates this metric
from other metrics across the union of all PMDAs

type A data type indicator showing whether the format is an integer (32 or 64 bit, signed or
unsigned); float; double; string; or arbitrary aggregate of binary data

indom An instance domain identifier that links this metric to an instance domain

Writing a PMDA

15

sem An encoding of the value's semantics (counter, instantaneous, or discrete)

units A description of the value's units based on dimension and scale in the three orthogonal
dimensions of space, time, and count (or events)

Note

This information can be observed for metrics from any active PMDA using pminfo command
line options, for example:

 $ pminfo -d -m network.interface.out.drops

 network.interface.out.drops PMID: 60.3.11
 Data Type: 64-bit unsigned int InDom: 60.3 0xf000003
 Semantics: counter Units: count

Symbolic constants of the form PM_TYPE_*, PM_SEM_*, PM_SPACE_*, PM_TIME_*, and
PM_COUNT_* are defined in the <pcp/pmapi.h> header file. You may use them to initialize the
elements of a pmDesc structure. The pmID type is an unsigned integer that can be safely cast to a
__pmID_int structure, which contains fields defining the metric's (PMDA's) domain, cluster, and item
number as shown in Example 2.3, “ __pmID_int Structure”:

Example 2.3. __pmID_int Structure

typedef struct {
 int flag:1;
 unsigned int domain:9;
 unsigned int cluster:12;
 unsigned int item:10;
} __pmID_int;

For additional information, see the <pcp/libpcp.h> file.

The flag field should be ignored. The domain number should be set at run time when the PMDA is
initialized. The PMDA_PMID macro defined in <pcp/pmapi.h> can be used to set the cluster and
item fields at compile time, as these should always be known and fixed for a particular metric.

Note

The three components of the PMID should correspond exactly to the three-part definition of the
PMID for the corresponding metric in the PMNS described in the section called “Name Space”.

A table of pmdaMetric structures should be defined within the PMDA, with one structure per metric as
shown in Example 2.4, “ pmdaMetric Structure”.

Example 2.4. pmdaMetric Structure

typedef struct {
 void *m_user; /* for users external use */
 pmDesc m_desc; /* metric description */
} pmdaMetric;

This structure contains a pmDesc structure and a handle that allows PMDA-specific structures to be
associated with each metric. For example, m_user could be a pointer to a global variable containing the
metric value, or a pointer to a function that may be called to instantiate the metric's value.

Writing a PMDA

16

The trivial PMDA, shown in Example 2.5, “Trivial PMDA”, has only a singular metric (that is, no instance
domain):

Example 2.5. Trivial PMDA

static pmdaMetric metrictab[] = {
/* time */
 { NULL,
 { PMDA_PMID(0, 1), PM_TYPE_U32, PM_INDOM_NULL, PM_SEM_INSTANT,
 PMDA_PMUNITS(0, 1, 0, 0, PM_TIME_SEC, 0) }, },
};

This single metric (trivial.time) has the following:

• A PMID with a cluster of 0 and an item of 1. Note that this is not yet a complete PMID, the domain
number which identifies the PMDA will be combined with it at runtime.

• An unsigned 32-bit integer (PM_TYPE_U32)

• A singular value and hence no instance domain (PM_INDOM_NULL)

• An instantaneous semantic value (PM_SEM_INSTANT)

• Dimension “time” and the units “seconds”

Semantics

The metric's semantics describe how PCP tools should interpret the metric's value. The following are the
possible semantic types:

• Counter (PM_SEM_COUNTER)

• Instantaneous value (PM_SEM_INSTANT)

• Discrete value (PM_SEM_DISCRETE)

A counter should be a value that monotonically increases (or monotonically decreases, which is less likely)
with respect to time, so that the rate of change should be used in preference to the actual value. Rate
conversion is not appropriate for metrics with instantaneous values, as the value is a snapshot and there
is no basis for assuming any values that might have been observed between snapshots. Discrete is similar
to instantaneous; however, once observed it is presumed the value will persist for an extended period (for
example, system configuration, static tuning parameters and most metrics with non-numeric values).

 For a given time interval covering six consecutive timestamps, each spanning two units of time, the metric
values in Example 2.6, “Effect of Semantics on a Metric” are exported from a PMDA (“N/A” implies no
value is available):

Example 2.6. Effect of Semantics on a Metric

Timestamps: 1 3 5 7 9 11
Value: 10 30 60 80 90 N/A

The default display of the values would be as follows:

Timestamps: 1 3 5 7 9 11

Writing a PMDA

17

Semantics:
Counter N/A 10 15 10 5 N/A
Instantaneous 10 30 60 80 90 N/A
Discrete 10 30 60 80 90 90

Note that these interpretations of metric semantics are performed by the monitor tool, automatically, before
displaying a value and they are not transformations that the PMDA performs.

Instances
Singular metrics have only one value and no associated instance domain. Some metrics contain a set of
values that share a common set of semantics for a specific instance, such as one value per processor, or
one value per disk spindle, and so on.

Note

The PMDA implementation is solely responsible for choosing the instance identifiers that
differentiate instances within the instance domain. The PMDA is also responsible for ensuring
the uniqueness of instance identifiers in any instance domain, as described in the section called
“Instance Identification”.

Instance Identification

Consistent interpretation of instances and instance domains require a few simple rules to be followed by
PMDA authors. The PMDA library provides a series of pmdaCache routines to assist.

• Each internal instance identifier (numeric) must be a unique 31-bit number.

• The external instance name (string) must be unique.

• When the instance name contains a space, the name to the left of the first space (the short name) must
also be unique.

• Where an external instance name corresponds to some object or entity, there is an expectation that the
association between the name and the object is fixed.

• It is preferable, although not mandatory, for the association between and external instance name (string)
and internal instance identifier (numeric) to be persistent.

N Dimensional Data

Where the performance data can be represented as scalar values (singular metrics) or one-dimensional
arrays or lists (metrics with an instance domain), the PCP framework is more than adequate. In the case
of metrics with an instance domain, each array or list element is associated with an instance from the
instance domain.

 To represent two or more dimensional arrays, the coordinates must be one of the following:

• Mapped onto one dimensional coordinates.

• Enumerated into the Performance Metrics Name Space (PMNS).

For example, this 2 x 3 array of values called M can be represented as instances 1,..., 6 for a metric M:

 M[1] M[2] M[3]

Writing a PMDA

18

 M[4] M[5] M[6]

Or they can be represented as instances 1, 2, 3 for metric M1 and instances 1, 2, 3 for metric M2:

 M1[1] M1[2] M1[3]
 M2[1] M2[2] M2[3]

The PMDA implementer must decide and consistently export this encoding from the N-dimensional
instrumentation to the 1-dimensional data model of the PCP. The use of metric label metadata - arbitrary
key/value pairs - allows the implementer to capture the higher dimensions of the performance data.

In certain special cases (for example, such as for a histogram), it may be appropriate to export an array
of values as raw binary data (the type encoding in the descriptor is PM_TYPE_AGGREGATE). However,
this requires the development of special PMAPI client tools, because the standard PCP tools have no
knowledge of the structure and interpretation of the binary data. The usual issues of platform-depdendence
must also be kept in mind for this case - endianness, word-size, alignment and so on - the (possibly remote)
special PMAPI client tools may need this information in order to decode the data successfully.

Data Structures

 If the PMDA is required to support instance domains, then for each instance domain the unique internal
instance identifier and external instance identifier should be defined using a pmdaInstid structure as
shown in Example 2.7, “ pmdaInstid Structure”:

Example 2.7. pmdaInstid Structure

typedef struct {
 int i_inst; /* internal instance identifier */
 char *i_name; /* external instance identifier */
} pmdaInstid;

The i_inst instance identifier must be a unique integer within a particular instance domain.

The complete instance domain description is specified in a pmdaIndom structure as shown in
Example 2.8, “ pmdaIndom Structure”:

Example 2.8. pmdaIndom Structure

typedef struct {
 pmInDom it_indom; /* indom, filled in */
 int it_numinst; /* number of instances */
 pmdaInstid *it_set; /* instance identifiers */
} pmdaIndom;

 The it_indom element contains a pmInDom that must be unique across every PMDA. The other fields
of the pmdaIndom structure are the number of instances in the instance domain and a pointer to an array
of instance descriptions.

Example 2.9, “ __pmInDom_int Structure” shows that the pmInDom can be safely cast to
__pmInDom_int, which specifies the PMDA's domain and the instance number within the PMDA:

Example 2.9. __pmInDom_int Structure

typedef struct {
 int flag:1;

Writing a PMDA

19

 unsigned int domain:9; /* the administrative PMD */
 unsigned int serial:22; /* unique within PMD */
} __pmInDom_int;

As with metrics, the PMDA domain number is not necessarily known until run time; so the domain field
must be set up when the PMDA is initialized.

For information about how an instance domain may also be associated with more than one metric, see the
pmdaInit(3) man page.

The simple PMDA, shown in Example 2.10, “Simple PMDA”, has five metrics and two instance domains
of three instances.

Example 2.10. Simple PMDA

/*
 * list of instances
 */
static pmdaInstid color[] = {
 { 0, “red” }, { 1, “green” }, { 2, “blue” }
};
static pmdaInstid *timenow = NULL;
static unsigned int timesize = 0;
/*
 * list of instance domains
 */
static pmdaIndom indomtab[] = {
#define COLOR_INDOM 0
 { COLOR_INDOM, 3, color },
#define NOW_INDOM 1
 { NOW_INDOM, 0, NULL },
};
/*
 * all metrics supported in this PMDA - one table entry for each
 */
static pmdaMetric metrictab[] = {
/* numfetch */
 { NULL,
 { PMDA_PMID(0, 0), PM_TYPE_U32, PM_INDOM_NULL, PM_SEM_INSTANT,
 PMDA_PMUNITS(0, 0, 0, 0, 0, 0) }, },
/* color */
 { NULL,
 { PMDA_PMID(0, 1), PM_TYPE_32, COLOR_INDOM, PM_SEM_INSTANT,
 PMDA_PMUNITS(0, 0, 0, 0, 0, 0) }, },
/* time.user */
 { NULL,
 { PMDA_PMID(1, 2), PM_TYPE_DOUBLE, PM_INDOM_NULL, PM_SEM_COUNTER,
 PMDA_PMUNITS(0, 1, 0, 0, PM_TIME_SEC, 0) }, },
/* time.sys */
 { NULL,
 { PMDA_PMID(1,3), PM_TYPE_DOUBLE, PM_INDOM_NULL, PM_SEM_COUNTER,
 PMDA_PMUNITS(0, 1, 0, 0, PM_TIME_SEC, 0) }, },
/* now */
 { NULL,

Writing a PMDA

20

 { PMDA_PMID(2,4), PM_TYPE_U32, NOW_INDOM, PM_SEM_INSTANT,
 PMDA_PMUNITS(0, 0, 0, 0, 0, 0) }, },
};

The metric simple.color is associated, via COLOR_INDOM, with the first instance domain listed in
indomtab. PMDA initialization assigns the correct domain portion of the instance domain identifier in
indomtab[0].it_indom and metrictab[1].m_desc.indom. This instance domain has three
instances: red, green, and blue.

The metric simple.now is associated, via NOW_INDOM, with the second instance domain listed in
indomtab. PMDA initialization assigns the correct domain portion of the instance domain identifier
in indomtab[1].it_indom and metrictab[4].m_desc.indom. This instance domain is
dynamic and initially has no instances.

All other metrics are singular, as specified by PM_INDOM_NULL.

In some cases an instance domain may vary dynamically after PMDA initialization (for example,
simple.now), and this requires some refinement of the default functions and data structures of
the libpcp_pmda library. Briefly, this involves providing new functions that act as wrappers for
pmdaInstance and pmdaFetch while understanding the dynamics of the instance domain, and then
overriding the instance and fetch methods in the pmdaInterface structure during PMDA initialization.

For the simple PMDA, the wrapper functions are simple_fetch and simple_instance, and defaults are
over-ridden by the following assignments in the simple_init function:

dp->version.any.fetch = simple_fetch;
dp->version.any.instance = simple_instance;

Labels
Metrics and instances can be further described through the use of metadata labels, which are arbitrary
name:value pairs associated with individual metrics and instances. There are several applications of this
concept, but one of the most important is the ability to differentiate the components of a multi-dimensional
instance name, such as the case of the mem.zoneinfo.numa_hit metric which has one value per
memory zone, per NUMA node.

Consider Example 2.11, “Multi-dimensional Instance Domain Labels”:

Example 2.11. Multi-dimensional Instance Domain Labels

 $ pminfo -l mem.zoneinfo.numa_hit

 mem.zoneinfo.numa_hit
 inst [0 or "DMA::node0"] labels {"device_type":["numa_node","memory"],"indom_name":"per zone per numa_node","numa_node":0,"zone":"DMA"}
 inst [1 or "Normal::node0"] labels {"device_type":["numa_node","memory"],"indom_name":"per zone per numa_node","numa_node":0,"zone":"Normal"}
 inst [2 or "DMA::node1"] labels {"device_type":["numa_node","memory"],"indom_name":"per zone per numa_node","numa_node":1,"zone":"DMA"}
 inst [3 or "Normal::node1"] labels {"device_type":["numa_node","memory"],"indom_name":"per zone per numa_node","numa_node":1,"zone":"Normal"}

Note

The metric labels used here individually describe the memory zone and NUMA node associated
with each instance.

The PMDA implementation is only partially responsible for choosing the label identifiers that differentiate
components of metrics and instances within an instance domain. Label sets for a singleton metric or

Writing a PMDA

21

individual instance of a set-valued metric are formed from a label hierarchy, which includes global labels
applied to all metrics and instances from one PMAPI context.

Labels are stored and communicated within PCP using JSONB format. This format is a restricted form of
JSON suitable for indexing and other operations. In JSONB form, insignificant whitespace is discarded,
and the order of label names is not preserved. Within the PMCS a lexicographically sorted key space is
always maintained, however. Duplicate label names are not permitted. The label with highest precedence
is the only one presented. If duplicate names are presented at the same hierarchy level, only one will be
preserved (exactly which one wins is arbitrary, so do not rely on this).

Label Hierarchy

The set of labels associated with any singleton metric or instance is formed by merging the sets of labels
at each level of a hierarchy. The lower levels of the hierarchy have highest precendence when merging
overlapping (duplicate) label names:

• Global context labels (as reported by the pmcd.labels metric) are the lowest precedence. The PMDA
implementor has no influence over labels at this level of the hierarchy, and these labels are typically
supplied by pmcd from /etc/pcp/labels files.

• Domain labels, for all metrics and instances of a PMDA, are the next highest precedence.

• Instance Domain labels, associated with an InDom, are the next highest precedence.

• Metric cluster labels, associated with a PMID cluster, are the next highest precedence.

• Metric item labels, associated with an individual PMID, are the next highest precedence.

• Instance labels, associated with a metric instance identifier, have the highest precedence.

Data Structures

 In any PMDA that supports labels at any level of the hierarchy, each individual label (one name:value
pair) requires a pmLabel structure as shown in Example 2.12, “ pmLabel Structure”:

Example 2.12. pmLabel Structure

typedef struct {
 uint name : 16; /* label name offset in JSONB string */
 uint namelen : 8; /* length of name excluding the null */
 uint flags : 8; /* information about this label */
 uint value : 16; /* offset of the label value */
 uint valuelen : 16; /* length of value in bytes */
} pmLabel;

The flags field is a bitfield identifying the hierarchy level and whether this name:value pair is intrinsic
(optional) or extrinsic (part of the mandatory, identifying metadata for the metric or instance). All other
fields are offsets and lengths in the JSONB string from an associated pmLabelSet structure.

Zero or more labels are specified via a label set, in a pmLabelSet structure as shown in Example 2.13,
“ pmLabelSet Structure”:

Example 2.13. pmLabelSet Structure

typedef struct {

Writing a PMDA

22

 uint inst; /* PM_IN_NULL or the instance ID */
 int nlabels; /* count of labels or error code */
 char *json; /* JSONB formatted labels string */
 uint jsonlen : 16; /* JSON string length byte count */
 uint padding : 16; /* zero, reserved for future use */
 pmLabel *labels; /* indexing into the JSON string */
} pmLabelSet;

This provides information about the set of labels associated with an entity (context, domain, indom, metric
cluster, item or instance). The entity will be from any one level of the label hierarchy. If at the lowest
hierarchy level (which happens to be highest precedence - instances) then the inst field will contain an
actual instance identifier instead of PM_IN_NULL.

For information about how a label can be associated with each level of the hierarchy, see the pmdaLabel(3)
man page.

The simple PMDA, shown in Example 2.14, “Simple PMDA”, associates labels at the domain, indom and
instance levels of the hierarhy.

Example 2.14. Simple PMDA

static int
simple_label(int ident, int type, pmLabelSet **lpp, pmdaExt *pmda)
{
 int serial;

 switch (type) {
 case PM_LABEL_DOMAIN:
 pmdaAddLabels(lpp, "{"role":"testing"}");
 break;
 case PM_LABEL_INDOM:
 serial = pmInDom_serial((pmInDom)ident);
 if (serial == COLOR_INDOM) {
 pmdaAddLabels(lpp, "{"indom_name":"color"}");
 pmdaAddLabels(lpp, "{"model":"RGB"}");
 }
 if (serial == NOW_INDOM) {
 pmdaAddLabels(lpp, "{"indom_name":"time"}");
 pmdaAddLabels(lpp, "{"unitsystem":"SI"}");
 }
 break;
 case PM_LABEL_CLUSTER:
 case PM_LABEL_ITEM:
 /* no labels to add for these types, fall through */
 default:
 break;
 }
 return pmdaLabel(ident, type, lpp, pmda);
}

static int
simple_labelCallBack(pmInDom indom, unsigned int inst, pmLabelSet **lp)
{
 struct timeslice *tsp;

Writing a PMDA

23

 if (pmInDom_serial(indom) != NOW_INDOM)
 return 0;
 if (pmdaCacheLookup(indom, inst, NULL, (void *)&tsp) != PMDA_CACHE_ACTIVE)
 return 0;
 /* SI units label, value: sec (seconds), min (minutes), hour (hours) */
 return pmdaAddLabels(lp, "{"units":"%s"}", tsp-<tm_name);
}

The simple_labelCallBack function is called indirectly via pmdaLabel for each instance of the
NOW_INDOM. PMDA initialization ensures these functions are registered with the global PMDA interface
structure for use when handling label requests, by the following assignments in the simple_init function:

dp->version.seven.label = simple_label;
pmdaSetLabelCallBack(dp, simple_labelCallBack);

Other Issues
Other issues include extracting the information, latency and threads of control, Name Space, PMDA help
text, and management of evolution within a PMDA.

Extracting the Information
A suggested approach to writing a PMDA is to write a standalone program to extract the values from
the target domain and then incorporate this program into the PMDA framework. This approach avoids
concurrent debugging of two distinct problems:

• Extraction of the data

• Communication with PMCD

These are some possible ways of exporting the data from the target domain:

• Accumulate the performance data in a public shared memory segment.

• Write the performance data to the end of a log file.

• Periodically rewrite a file with the most recent values for the performance data.

• Implement a protocol that allows a third party to connect to the target application, send a request, and
receive new performance data.

• If the data is in the operating system kernel, provide a kernel interface (preferred) to export the
performance data.

Most of these approaches require some further data processing by the PMDA.

Latency and Threads of Control
 The PCP protocols expect PMDAs to return the current values for performance metrics when requested,
and with short delay (low latency). For some target domains, access to the underlying instrumentation
may be costly or involve unpredictable delays (for example, if the real performance data is stored on
some remote host or network device). In these cases, it may be necessary to separate probing for new
performance data from servicing PMCD requests.

Writing a PMDA

24

An architecture that has been used successfully for several PMDAs is to create one or more child processes
to obtain information while the main process communicates with PMCD.

At the simplest deployment of this arrangement, the two processes may execute without synchronization.
Threads have also been used as a more portable multithreading mechanism; see the pthreads(7) man page.

By contrast, a complex deployment would be one in which the refreshing of the metric values must be
atomic, and this may require double buffering of the data structures. It also requires coordination between
parent and child processes.

Warning

Since certain data structures used by the PMDA library are not thread-aware, only one PMDA
thread of control should call PMDA library functions - this would typically be the thread servicing
requests from PMCD.

One caveat about this style of caching PMDA--in this (special) case it is better if the PMDA converts counts
to rates based upon consecutive periodic sampling from the underlying instrumentation. By exporting
precomputed rate metrics with instantaneous semantics, the PMDA prevents the PCP monitor tools from
computing their own rates upon consecutive PMCD fetches (which are likely to return identical values from
a caching PMDA). The finer points of metric semantics are discussed in the section called “Semantics”

Name Space
 The PMNS file defines the name space of the PMDA. It is a simple text file that is used during installation
to expand the Name Space of the PMCD process. The format of this file is described by the pmns(5) man
page and its hierarchical nature, syntax, and helper tools are further described in the Performance Co-Pilot
User's and Administrator's Guide.

Client processes will not be able to access the PMDA metrics if the PMNS file is not installed as part
of the PMDA installation procedure on the collector host. The installed list of metric names and their
corresponding PMIDs can be found in ${PCP_VAR_DIR}/pmns/root.

 Example 2.15, “ pmns File for the Simple PMDA” shows the simple PMDA, which has five metrics:

• Three metrics immediately under the simple node

• Two metrics under another non-terminal node called simple.time

Example 2.15. pmns File for the Simple PMDA

simple {
 numfetch SIMPLE:0:0
 color SIMPLE:0:1
 time
 now SIMPLE:2:4
}
simple.time {
 user SIMPLE:1:2
 sys SIMPLE:1:3
}

Metrics that have different clusters do not have to be specified in different subtrees of the PMNS.
Example 2.16, “Alternate pmns File for the Simple PMDA” shows an alternative PMNS for the simple
PMDA:

Writing a PMDA

25

Example 2.16. Alternate pmns File for the Simple PMDA

simple {
 numfetch SIMPLE:0:0
 color SIMPLE:0:1
 usertime SIMPLE:1:2
 systime SIMPLE:1:3
}

In this example, the SIMPLE macro is replaced by the domain number listed in ${PCP_VAR_DIR}/
pmns/stdpmid for the corresponding PMDA during installation (for the simple PMDA, this would
normally be the value 253).

If the PMDA implementer so chooses, all or a subset of the metric names and identifiers can be specified
programatically. In this situation, a special asterisk syntax is used to denote those subtrees which are to be
handles this way. Example 2.17, “Dynamic metrics pmns File for the Simple PMDA” shows this dynamic
namespace syntax, for all metrics in the simple PMDA:

Example 2.17. Dynamic metrics pmns File for the Simple PMDA

simple SIMPLE:*:*

In this example, like the one before, the SIMPLE macro is replaced by the domain number, and all
(simple.*) metric namespace operations must be handled by the PMDA. This is in contrast to the static
metric name model earlier, where the host-wide PMNS file is updated and used by PMCD, acting on
behalf of the agent.

PMDA Help Text
 For each metric defined within a PMDA, the PMDA developer is strongly encouraged to provide both terse
and extended help text to describe the metric, and perhaps provide hints about the expected value ranges.

The help text is used to describe each metric in the visualization tools and pminfo with the -T option.
The help text, such as the help text for the simple PMDA in Example 2.18, “Help Text for the Simple
PMDA”, is specified in a specially formatted file, normally called help. This file is converted to the
expected run-time format using the newhelp command; see the newhelp(1) man page. Converted help
text files are usually placed in the PMDA's directory below ${PCP_PMDAS_DIR} as part of the PMDA
installation procedure.

Example 2.18. Help Text for the Simple PMDA

The two instance domains and five metrics have a short and a verbose description. Each entry begins with a
line that starts with the character “@” and is followed by either the metric name (simple.numfetch) or
a symbolic reference to the instance domain number (SIMPLE.1), followed by the short description. The
verbose description is on the following lines, terminated by the next line starting with “@” or end of file:

@ SIMPLE.0 Instance domain “colour” for simple PMDA
Universally 3 instances, “red” (0), “green” (1) and “blue” (3).

@ SIMPLE.1 Dynamic instance domain “time” for simple PMDA
An instance domain is computed on-the-fly for exporting current time
information. Refer to the help text for simple.now for more details.

@ simple.numfetch Number of pmFetch operations.

Writing a PMDA

26

The cumulative number of pmFetch operations directed to “simple” PMDA.

This counter may be modified with pmstore(1).

@ simple.color Metrics which increment with each fetch
This metric has 3 instances, designated “red”, “green” and “blue”.

The value of the metric is monotonic increasing in the range 0 to
255, then back to 0. The different instances have different starting
values, namely 0 (red), 100 (green) and 200 (blue).

The metric values my be altered using pmstore(1).

@ simple.time.user Time agent has spent executing user code
The time in seconds that the CPU has spent executing agent user code.

@ simple.time.sys Time agent has spent executing system code
The time in seconds that the CPU has spent executing agent system code.

@ simple.now Time of day with a configurable instance domain
The value reflects the current time of day through a dynamically
reconfigurable instance domain. On each metric value fetch request,
the agent checks to see whether the configuration file in
${PCP_PMDAS_DIR}/simple/simple.conf has been modified - if it has then
the file is re-parsed and the instance domain for this metric is again
constructed according to its contents.

This configuration file contains a single line of comma-separated time
tokens from this set:
 “sec” (seconds after the minute),
 “min” (minutes after the hour),
 “hour” (hour since midnight).

An example configuration file could be: sec,min,hour
and in this case the simple.now metric would export values for the
three instances “sec”, “min” and “hour” corresponding respectively to
the components seconds, minutes and hours of the current time of day.

The instance domain reflects each token present in the file, and the
values reflect the time at which the PMDA processes the fetch.

Management of Evolution within a PMDA
 Evolution of a PMDA, or more particularly the underlying instrumentation to which it provides access,
over time naturally results in the appearance of new metrics and the disappearance of old metrics. This
creates potential problems for PMAPI clients and PCP tools that may be required to interact with both
new and former versions of the PMDA.

The following guidelines are intended to help reduce the complexity of implementing a PMDA in the
face of evolutionary change, while maintaining predictability and semantic coherence for tools using the
PMAPI, and for end users of those tools.

• Try to support as full a range of metrics as possible in every version of the PMDA. In this context,
support means responding sensibly to requests, even if the underlying instrumentation is not available.

Writing a PMDA

27

• If a metric is not supported in a given version of the underlying instrumentation, the PMDA should
respond to pmLookupDesc requests with a pmDesc structure whose type field has the special
value PM_TYPE_NOSUPPORT. Values of fields other than pmid and type are immaterial, but
Example 2.19, “ Setting Values” is typically benign:

Example 2.19. Setting Values

pmDesc dummy = {
 .pmid = PMDA_PMID(3,0), /* pmid, fill this in */
 .type = PM_TYPE_NOSUPPORT, /* this is the important part */
 .indom = PM_INDOM_NULL, /* singular,causes no problems */
 .sem = 0, /* no semantics */
 .units = PMDA_PMUNITS(0,0,0,0,0,0) /* no units */
};

• If a metric lacks support in a particular version of the underlying instrumentation, the PMDA should
respond to pmFetch requests with a pmResult in which no values are returned for the unsupported
metric. This is marginally friendlier than the other semantically acceptable option of returning an illegal
PMID error or PM_ERR_PMID.

• Help text should be updated with annotations to describe different versions of the underlying product,
or product configuration options, for which a specific metric is available. This is so pmLookupText
can always respond correctly.

• The pmStore operation should fail with return status of PM_ERR_PERMISSION if a user or application
tries to amend the value of an unsupported metric.

• The value extraction, conversion, and printing functions (pmExtractValue, pmConvScale,
pmAtomStr, pmTypeStr, and pmPrintValue) return the PM_ERR_CONV error or an appropriate
diagnostic string, if an attempt is made to operate on a value for which type is
PM_TYPE_NOSUPPORT.

If performance tools take note of the type field in the pmDesc structure, they should not manipulate
values for unsupported metrics. Even if tools ignore type in the metric's description, following these
development guidelines ensures that no misleading value is ever returned; so there is no reason to call
the extraction, conversion, and printing functions.

PMDA Interface
This section describes an interface for the request handling callbacks in a PMDA. This interface is used
by PMCD for communicating with DSO PMDAs and is also used by daemon PMDAs with pmdaMain.

Overview
Both daemon and DSO PMDAs must handle multiple request types from PMCD. A daemon PMDA
communicates with PMCD using the PDU protocol, while a DSO PMDA defines callbacks for each request
type. To avoid duplicating this PDU processing (in the case of a PMDA that can be installed either as a
daemon or as a DSO), and to allow a consistent framework, pmdaMain can be used by a daemon PMDA
as a wrapper to handle the communication protocol using the same callbacks as a DSO PMDA. This allows
a PMDA to be built as both a daemon and a DSO, and then to be installed as either.

To further simplify matters, default callbacks are declared in <pcp/pmda.h>:

• pmdaFetch

Writing a PMDA

28

• pmdaProfile

• pmdaInstance

• pmdaDesc

• pmdaText

• pmdaStore

• pmdaPMID

• pmdaName

• pmdaChildren

• pmdaAttribute

• pmdaLabel

Each callback takes a pmdaExt structure as its last argument. This structure contains all the information
that is required by the default callbacks in most cases. The one exception is pmdaFetch, which needs
an additional callback to instantiate the current value for each supported combination of a performance
metric and an instance.

Therefore, for most PMDAs all the communication with PMCD is automatically handled by functions in
libpcp.so and libpcp_pmda.so.

Trivial PMDA

The trivial PMDA uses all of the default callbacks as shown in Example 2.20, “Request Handling Callbacks
in the Trivial PMDA”. The additional callback for pmdaFetch is defined as trivial_fetchCallBack:

Example 2.20. Request Handling Callbacks in the Trivial PMDA

static int
trivial_fetchCallBack(pmdaMetric *mdesc, unsigned int inst, pmAtomValue *atom)
{
 __pmID_int *idp = (__pmID_int *)&(mdesc->m_desc.pmid);

 if (idp->cluster != 0 || idp->item != 0)
 return PM_ERR_PMID;
 if (inst != PM_IN_NULL)
 return PM_ERR_INST;
 atom->l = time(NULL);
 return 0;
}

This function checks that the PMID and instance are valid, and then places the metric value for the current
time into the pmAtomValue structure.

The callback is set up by a call to pmdaSetFetchCallBack in trivial_init. As a rule of thumb, the
API routines with named ending with CallBack are helpers for the higher PDU handling routines like
pmdaFetch. The latter are set directly using the PMDA Interface Structures, as described in the section
called “PMDA Structures”.

Writing a PMDA

29

Simple PMDA

 The simple PMDA callback for pmdaFetch is more complicated because it supports more metrics, some
metrics are instantiated with each fetch, and one instance domain is dynamic. The default pmdaFetch
callback, shown in Example 2.21, “Request Handling Callbacks in the Simple PMDA”, is replaced by
simple_fetch in simple_init, which increments the number of fetches and updates the instance domain
for INDOM_NOW before calling pmdaFetch:

Example 2.21. Request Handling Callbacks in the Simple PMDA

static int
simple_fetch(int numpmid, pmID pmidlist[], pmResult **resp, pmdaExt *pmda)
{
 numfetch++;
 simple_timenow_check();
 simple_timenow_refresh();
 return pmdaFetch(numpmid, pmidlist, resp, pmda);
}

The callback for pmdaFetch is defined as simple_fetchCallBack. The PMID is extracted from the
pmdaMetric structure, and if valid, the appropriate field in the pmAtomValue structure is set. The
available types and associated fields are described further in the section called “Performance Metric
Descriptions” and Example 3.18, “ pmAtomValue Structure”.

Note

Note that PMID validity checking need only check the cluster and item numbers, the domain
number is guaranteed to be valid and the PMDA should make no assumptions about the actual
domain number being used at this point.

The simple.numfetch metric has no instance domain and is easily handled first as shown in
Example 2.22, “ simple.numfetch Metric”:

Example 2.22. simple.numfetch Metric

static int
simple_fetchCallBack(pmdaMetric *mdesc, unsigned int inst, pmAtomValue *atom)
{
 int i;
 static int oldfetch;
 static double usr, sys;
 __pmID_int *idp = (__pmID_int *)&(mdesc->m_desc.pmid);

 if (inst != PM_IN_NULL &&
 !(idp->cluster == 0 && idp->item == 1) &&
 !(idp->cluster == 2 && idp->item == 4))
 return PM_ERR_INST;
 if (idp->cluster == 0) {
 if (idp->item == 0) { /* simple.numfetch */
 atom->l = numfetch;
 }

In Example 2.23, “ simple.color Metric”, the inst parameter is used to specify which instance is
required for the simple.color metric:

Writing a PMDA

30

Example 2.23. simple.color Metric

 else if (idp->item == 1) { /* simple.color */
 switch (inst) {
 case 0: /* red */
 red = (red + 1) % 256;
 atom->l = red;
 break;
 case 1: /* green */
 green = (green + 1) % 256;
 atom->l = green;
 break;
 case 2: /* blue */
 blue = (blue + 1) % 256;
 atom->l = blue;
 break;
 default:
 return PM_ERR_INST;
 }
 }
 else
 return PM_ERR_PMID;

In Example 2.24, “ simple.time Metric”, the simple.time metric is in a second cluster and has a
simple optimization to reduce the overhead of calling times twice on the same fetch and return consistent
values from a single call to times when both metrics simple.time.user and simple.time.sys
are requested in a single pmFetch. The previous fetch count is used to determine if the usr and sys
values should be updated:

Example 2.24. simple.time Metric

 else if (idp->cluster == 1) { /* simple.time */
 if (oldfetch < numfetch) {
 __pmProcessRunTimes(&usr, &sys);
 oldfetch = numfetch;
 }
 if (idp->item == 2) /* simple.time.user */
 atom->d = usr;
 else if (idp->item == 3) /* simple.time.sys */
 atom->d = sys;
 else
 return PM_ERR_PMID;
 }

In Example 2.25, “ simple.now Metric”, the simple.now metric is in a third cluster and uses inst
again to select a specific instance from the INDOM_NOW instance domain. The values associated with
instances in this instance domain are managed using the pmdaCache(3) helper routines, which provide
efficient interfaces for managing more complex instance domains:

Example 2.25. simple.now Metric

 else if (idp->cluster == 2) {
 if (idp->item == 4) { /* simple.now */
 struct timeslice *tsp;

Writing a PMDA

31

 sts = pmdaCacheLookup(*now_indom, inst, NULL, (void *)&tsp);
 if (sts != PMDA_CACHE_ACTIVE) {
 if (sts < 0)
 pmNotifyErr(LOG_ERR, "pmdaCacheLookup failed: inst=%d: %s",
 inst, pmErrStr(sts));
 return PM_ERR_INST;
 }
 atom->l = tsp->tm_field;
 }
 else
 return PM_ERR_PMID;
 }

simple_store in the Simple PMDA

The simple PMDA permits some of the metrics it supports to be modified by pmStore as shown in
Example 2.26, “ simple_store in the Simple PMDA”. For additional information, see the pmstore(1)
and pmStore(3) man pages.

Example 2.26. simple_store in the Simple PMDA

The pmdaStore callback (which returns PM_ERR_PERMISSION to indicate no metrics can be altered)
is replaced by simple_store in simple_init. This replacement function must take the same arguments so
that it can be assigned to the function pointer in the pmdaInterface structure.

The function traverses the pmResult and checks the cluster and unit of each PMID to ensure that it
corresponds to a metric that can be changed. Checks are made on the values to ensure they are within range
before being assigned to variables in the PMDA that hold the current values for exported metrics:

static int
simple_store(pmResult *result, pmdaExt *pmda)
{
 int i, j, val, sts = 0;
 pmAtomValue av;
 pmValueSet *vsp = NULL;
 __pmID_int *pmidp = NULL;

 /* a store request may affect multiple metrics at once */
 for (i = 0; i < result->numpmid; i++) {
 vsp = result->vset[i];
 pmidp = (__pmID_int *)&vsp->pmid;
 if (pmidp->cluster == 0) { /* storable metrics are cluster 0 */
 switch (pmidp->item) {
 case 0: /* simple.numfetch */
 val = vsp->vlist[0].value.lval;
 if (val < 0) {
 sts = PM_ERR_SIGN;
 val = 0;
 }
 numfetch = val;
 break;
 case 1: /* simple.color */
 /* a store request may affect multiple instances at once */
 for (j = 0; j < vsp->numval && sts == 0; j++) {

Writing a PMDA

32

 val = vsp->vlist[j].value.lval;
 if (val < 0) {
 sts = PM_ERR_SIGN;
 val = 0;
 } if (val > 255) {
 sts = PM_ERR_CONV;
 val = 255;
 }

The simple.color metric has an instance domain that must be searched because any or all instances
may be specified. Any instances that are not supported in this instance domain should cause an error value
of PM_ERR_INST to be returned as shown in Example 2.27, “ simple.color and PM_ERR_INST
Errors”:

Example 2.27. simple.color and PM_ERR_INST Errors

 switch (vsp->vlist[j].inst) {
 case 0: /* red */
 red = val;
 break;
 case 1: /* green */
 green = val;
 break;
 case 2: /* blue */
 blue = val;
 break;
 default:
 sts = PM_ERR_INST;
 }

Any other PMIDs in cluster 0 that are not supported by the simple PMDA should result in an error value
of PM_ERR_PMID as shown in Example 2.28, “ PM_ERR_PMID Errors”:

Example 2.28. PM_ERR_PMID Errors

 default:
 sts = PM_ERR_PMID;
 break;
 }
 }

Any metrics that cannot be altered should generate an error value of PM_ERR_PERMISSION, and metrics
not supported by the PMDA should result in an error value of PM_ERR_PMID as shown in Example 2.29,
“ PM_ERR_PERMISSION and PM_ERR_PMID Errors”:

Example 2.29. PM_ERR_PERMISSION and PM_ERR_PMID Errors

 else if ((pmidp->cluster == 1 &&
 (pmidp->item == 2 || pmidp->item == 3)) ||
 (pmidp->cluster == 2 && pmidp->item == 4)) {
 sts = PM_ERR_PERMISSION;
 break;
 }
 else {

Writing a PMDA

33

 sts = PM_ERR_PMID;
 break;
 }
 }
 return sts;
}

The structure pmdaExt pmda argument is not used by the simple_store function above.

Note

When using storable metrics, it is important to consider the implications. It is possible pmlogger
is actively sampling the metric being modified, for example, which may cause unexpected results
to be persisted in an archive. Consider also the use of client credentials, available via the attribute
callback of the pmdaInterface structure, to appropriately limit access to any modifications
that might be made via your storable metrics.

Return Codes for pmdaFetch Callbacks

In PMDA_INTERFACE_1 and PMDA_INTERFACE_2, the return codes for the pmdaFetch callback
function are defined:

Value Meaning

< 0 Error code (for example, PM_ERR_PMID, PM_ERR_INST or PM_ERR_AGAIN)

0 Success

In PMDA_INTERFACE_3 and all later versions, the return codes for the pmdaFetch callback function
are defined:

Value Meaning

< 0 Error code (for example, PM_ERR_PMID, PM_ERR_INST)

0 Metric value not currently available

> 0 Success

PMDA Structures
PMDA structures used with the pcp_pmda library are defined in <pcp/pmda.h>. Example 2.30,
“ pmdaInterface Structure Header” and Example 2.32, “ pmdaExt Stucture” describe the
pmdaInterface and pmdaExt structures.

Example 2.30. pmdaInterface Structure Header

The callbacks must be specified in a pmdaInterface structure:

typedef struct {
 int domain; /* set/return performance metrics domain id here */
 struct {
 unsigned int pmda_interface : 8; /* PMDA DSO version */
 unsigned int pmapi_version : 8; /* PMAPI version */

Writing a PMDA

34

 unsigned int flags : 16; /* optional feature flags */
 } comm; /* set/return communication and version info */
 int status; /* return initialization status here */
 union {
 ...

This structure is passed by PMCD to a DSO PMDA as an argument to the initialization function. This
structure supports multiple (binary-compatible) versions--the second and subsequent versions have support
for the pmdaExt structure. Protocol version one is for backwards compatibility only, and should not be
used in any new PMDA.

To date there have been six revisions of the interface structure:

• Version two added the pmdaExt structure, as mentioned above.

• Version three changed the fetch callback return code semantics, as mentioned in the section called
“Return Codes for pmdaFetch Callbacks”.

• Version four added support for dynamic metric names, where the PMDA is able to create and remove
metric names on-the-fly in response to changes in the performance domain (pmdaPMID, pmdaName,
pmdaChildren interfaces)

• Version five added support for per-client contexts, where the PMDA is able to track arrival and
disconnection of PMAPI client tools via PMCD (pmdaGetContext helper routine). At the same
time, support for PM_TYPE_EVENT metrics was implemented, which relies on the per-client context
concepts (pmdaEvent* helper routines).

• Version six added support for authenticated client contexts, where the PMDA is informed of user
credentials and other PMCD attributes of the connection between individual PMAPI clients and PMCD
(pmdaAttribute interface)

• Version seven added support for metadata labels, where the PMDA is able to associate name:value pairs
in a hierarchy such that additional metadata, above and beyond the metric descriptors, is associated with
metrics and instances (pmdaLabel interface)

Example 2.31. pmdaInterface Structure, Latest Version

 ...
 union {
 ...
 /*
 * PMDA_INTERFACE7
 */
 struct {
 pmdaExt *ext;
 int (*profile)(pmdaInProfile *, pmdaExt *);
 int (*fetch)(int, pmID *, pmResult **, pmdaExt *);
 int (*desc)(pmID, pmDesc *, pmdaExt *);
 int (*instance)(pmInDom, int, char *, pmdaInResult **, pmdaExt *);
 int (*text)(int, int, char **, pmdaExt *);
 int (*store)(pmResult *, pmdaExt *);
 int (*pmid)(const char *, pmID *, pmdaExt *);
 int (*name)(pmID, char ***, pmdaExt *);
 int (*children)(const char *, int, char ***, int **, pmdaExt *);
 int (*attribute)(int, int, const char *, int, pmdaExt *);

Writing a PMDA

35

 int (*label)(int, int, pmLabelSet **, pmdaExt *);
 } seven;
 } version;
} pmdaInterface;

Note

Each new interface version is always defined as a superset of those that preceded it, only adds
fields at the end of the new structure in the union, and is always binary backwards-compatible.
And thus it shall remain. For brevity, we have shown only the latest interface version
(seven) above, but all prior versions still exist, build, and function. In other words, PMDAs built
against earlier versions of this header structure (and PMDA library) function correctly with the
latest version of the PMDA library.

Example 2.32. pmdaExt Stucture

Additional PMDA information must be specified in a pmdaExt structure:

typedef struct {
 unsigned int e_flags; /* PMDA_EXT_FLAG_* bit field */
 void *e_ext; /* used internally within libpcp_pmda */
 char *e_sockname; /* socket name to pmcd */
 char *e_name; /* name of this pmda */
 char *e_logfile; /* path to log file */
 char *e_helptext; /* path to help text */
 int e_status; /* =0 is OK */
 int e_infd; /* input file descriptor from pmcd */
 int e_outfd; /* output file descriptor to pmcd */
 int e_port; /* port to pmcd */
 int e_singular; /* =0 for singular values */
 int e_ordinal; /* >=0 for non-singular values */
 int e_direct; /* =1 if pmid map to meta table */
 int e_domain; /* metrics domain */
 int e_nmetrics; /* number of metrics */
 int e_nindoms; /* number of instance domains */
 int e_help; /* help text comes via this handle */
 pmProfile *e_prof; /* last received profile */
 pmdaIoType e_io; /* connection type to pmcd */
 pmdaIndom *e_indoms; /* instance domain table */
 pmdaIndom *e_idp; /* instance domain expansion */
 pmdaMetric *e_metrics; /* metric description table */
 pmdaResultCallBack e_resultCallBack; /* to clean up pmResult after fetch */
 pmdaFetchCallBack e_fetchCallBack; /* to assign metric values in fetch */
 pmdaCheckCallBack e_checkCallBack; /* callback on receipt of a PDU */
 pmdaDoneCallBack e_doneCallBack; /* callback after PDU is processed */
 /* added for PMDA_INTERFACE_5 */
 int e_context; /* client context id from pmcd */
 pmdaEndContextCallBack e_endCallBack; /* callback after client context closed */
 /* added for PMDA_INTERFACE_7 */
 pmdaLabelCallBack e_labelCallBack; /* callback to lookup metric instance labels */
} pmdaExt;

 The pmdaExt structure contains filenames, pointers to tables, and some variables shared by
several functions in the pcp_pmda library. All fields of the pmdaInterface and pmdaExt

Writing a PMDA

36

structures can be correctly set by PMDA initialization functions; see the pmdaDaemon(3), pmdaDSO(3),
pmdaGetOptions(3), pmdaInit(3), and pmdaConnect(3) man pages for a full description of how various
fields in these structures may be set or used by pcp_pmda library functions.

Initializing a PMDA
Several functions are provided to simplify the initialization of a PMDA. These functions, if used, must be
called in a strict order so that the PMDA can operate correctly.

Overview
The initialization process for a PMDA involves opening help text files, assigning callback function
pointers, adjusting the metric and instance identifiers to the correct domains, and much more.
The initialization of a daemon PMDA also differs significantly from a DSO PMDA, since the
pmdaInterface structure is initialized by main or the PMCD process, respectively.

Common Initialization
As described in the section called “DSO PMDA”, an initialization function is provided by a DSO PMDA
and called by PMCD. Using the standard PMDA wrappers, the same function can also be used as part of
the daemon PMDA initialization. This PMDA initialization function performs the following tasks:

• Assigning callback functions to the function pointer interface of pmdaInterface

• Assigning pointers to the metric and instance tables from pmdaExt

• Opening the help text files

• Assigning the domain number to the instance domains

• Correlating metrics with their instance domains

 If the PMDA uses the common data structures defined for the pcp_pmda library, most of these
requirements can be handled by the default pmdaInit function; see the pmdaInit(3) man page.

Because the initialization function is the only initialization opportunity for a DSO PMDA, the common
initialization function should also perform any DSO-specific functions that are required. A default
implementation of this functionality is provided by the pmdaDSO function; see the pmdaDSO(3) man
page.

Trivial PMDA

 Example 2.33, “Initialization in the Trivial PMDA” shows the trivial PMDA, which has no instances (that
is, all metrics have singular values) and a single callback. This callback is for the pmdaFetch function
called trivial_fetchCallBack; see the pmdaFetch(3) man page:

Example 2.33. Initialization in the Trivial PMDA

static char *username;
static int isDSO = 1; /* ==0 if I am a daemon */

void trivial_init(pmdaInterface *dp)
{

Writing a PMDA

37

 if (isDSO)
 pmdaDSO(dp, PMDA_INTERFACE_2, “trivial DSO”,
 “${PCP_PMDAS_DIR}/trivial/help”);
 else
 pmSetProcessIdentity(username);

 if (dp->status != 0)
 return;

 pmdaSetFetchCallBack(dp, trivial_fetchCallBack);
 pmdaInit(dp, NULL, 0,
 metrictab, sizeof(metrictab)/sizeof(metrictab[0]));
}

The trivial PMDA can execute as either a DSO or daemon PMDA. A default installation installs it as a
daemon, however, and the main routine clears isDSO and sets username accordingly.

The trivial_init routine provides the opportunity to do any extra DSO or daemon setup before calling the
library pmdaInit. In the example, the help text is setup for DSO mode and the daemon is switched to run
as an unprivileged user (default is root, but it is generally good form for PMDAs to run with the least
privileges possible). If dp->status is non-zero after the pmdaDSO call, the PMDA will be removed
by PMCD and cannot safely continue to use the pmdaInterface structure.

Simple PMDA

 In Example 2.34, “Initialization in the Simple PMDA”, the simple PMDA uses its own callbacks to handle
PDU_FETCH and PDU_RESULT request PDUs (for pmFetch and pmStore operations respectively), as
well as providing pmdaFetch with the callback simple_fetchCallBack.

Example 2.34. Initialization in the Simple PMDA

static int isDSO = 1; /* =0 I am a daemon */
static char *username;

void simple_init(pmdaInterface *dp)
{
 if (isDSO)
 pmdaDSO(dp, PMDA_INTERFACE_7, “simple DSO”,
 “${PCP_PMDAS_DIR}/simple/help”);
 else
 pmSetProcessIdentity(username);

 if (dp->status != 0)
 return;

 dp->version.any.fetch = simple_fetch;
 dp->version.any.store = simple_store;
 dp->version.any.instance = simple_instance;
 dp->version.seven.label = simple_label;
 pmdaSetFetchCallBack(dp, simple_fetchCallBack);
 pmdaSetLabelCallBack(dp, simple_labelCallBack);
 pmdaInit(dp, indomtab, sizeof(indomtab)/sizeof(indomtab[0]),
 metrictab, sizeof(metrictab)/sizeof(metrictab[0]));
}

Writing a PMDA

38

Once again, the simple PMDA may be installed either as a daemon PMDA or a DSO PMDA. The static
variable isDSO indicates whether the PMDA is running as a DSO or as a daemon. A daemon PMDA
always changes the value of this variable to 0 in main, for PMDAs that can operate in both modes.

Remember also, as described earlier, simple_fetch is dealing with a single request for (possibly many)
values for metrics from the PMDA, and simple_fetchCallBack is its little helper, dealing with just one
metric and one instance (optionally, if the metric happens to have an instance domain) within that larger
request.

Daemon Initialization
In addition to the initialization function that can be shared by a DSO and a daemon PMDA, a daemon
PMDA must also meet the following requirements:

• Create the pmdaInterface structure that is passed to the initialization function

• Parse any command-line arguments

• Open a log file (a DSO PMDA uses PMCD's log file)

• Set up the IPC connection between the PMDA and the PMCD process

• Handle incoming PDUs

 All these requirements can be handled by default initialization functions in the pcp_pmda library; see
the pmdaDaemon(3), pmdaGetOptions(3), pmdaOpenLog(3), pmdaConnect(3), and pmdaMain(3)
man pages.

Note

Optionally, a daemon PMDA may wish to reduce or change its privilege level, as seen in
Example 2.33, “Initialization in the Trivial PMDA” and Example 2.34, “Initialization in the
Simple PMDA”. Some performance domains require the extraction process to run as a specific
user in order to access the instrumentation. Many domains require the default root level of
access for a daemon PMDA.

The simple PMDA specifies the command-line arguments it accepts using pmdaGetOptions, as shown
in Example 2.35, “ main in the Simple PMDA”. For additional information, see the pmdaGetOptions(3)
man page.

Example 2.35. main in the Simple PMDA

static pmLongOptions longopts[] = {
 PMDA_OPTIONS_HEADER(“Options”),
 PMOPT_DEBUG,
 PMDAOPT_DOMAIN,
 PMDAOPT_LOGFILE,
 PMDAOPT_USERNAME,
 PMOPT_HELP,
 PMDA_OPTIONS_TEXT(“\nExactly one of the following options may appear:”),
 PMDAOPT_INET,
 PMDAOPT_PIPE,
 PMDAOPT_UNIX,
 PMDAOPT_IPV6,
 PMDA_OPTIONS_END
};

Writing a PMDA

39

static pmdaOptions opts = {
 .short_options = “D:d:i:l:pu:U:6:?”,
 .long_options = longopts,
};

int
main(int argc, char **argv)
{
 pmdaInterface dispatch;

 isDSO = 0;
 pmSetProgname(argv[0]);
 pmGetUsername(&username);
 pmdaDaemon(&dispatch, PMDA_INTERFACE_7, pmGetProgname(), SIMPLE,
 “simple.log”, “${PCP_PMDAS_DIR}/simple/help”);

 pmdaGetOptions(argc, argv, &opts, &dispatch);
 if (opts.errors) {
 pmdaUsageMessage(&opts);
 exit(1);
 }
 if (opts.username)
 username = opts.username;

 pmdaOpenLog(&dispatch);
 simple_init(&dispatch);
 simple_timenow_check();
 pmdaConnect(&dispatch);
 pmdaMain(&dispatch);

 exit(0);
}

The conditions under which pmdaMain will return are either unexpected error conditions (often from
failed initialisation, which would already have been logged), or when PMCD closes the connection to the
PMDA. In all cases the correct action to take is simply to exit cleanly, possibly after any final cleanup
the PMDA may need to perform.

Testing and Debugging a PMDA
Ensuring the correct operation of a PMDA can be difficult, because the responsibility of providing metrics
to the requesting PMCD process and simultaneously retrieving values from the target domain requires
nearly real-time communication with two modules beyond the PMDA's control. Some tools are available
to assist in this important task.

Overview
Thoroughly testing a PMDA with PMCD is difficult, although testing a daemon PMDA is marginally
simpler than testing a DSO PMDA. If a DSO PMDA exits, PMCD also exits because they share a single
address space and control thread.

The difficulty in using PMCD to test a daemon PMDA results from PMCD requiring timely
replies from the PMDA in response to request PDUs. Although a timeout period can be set in

Writing a PMDA

40

${PCP_PMCDOPTIONS_PATH}, attaching a debugger (such as gdb) to the PMDA process might cause
an already running PMCD to close its connection with the PMDA. If timeouts are disabled, PMCD could
wait forever to connect with the PMDA.

If you suspect a PMDA has been terminated due to a timeout failure, check the PMCD log file, usually
${PCP_LOG_DIR}/pmcd/pmcd.log.

A more robust way of testing a PMDA is to use the dbpmda tool, which is similar to PMCD except that
dbpmda provides complete control over the PDUs that are sent to the PMDA, and there are no time limits--
it is essentially an interactive debugger for exercising a PMDA. See the dbpmda(3) man page for details.

In addition, careful use of PCP debugging flags can produce useful information concerning a PMDA's
behavior; see the PMAPI(3) and pmdbg(1) man pages for a discussion of the PCP debugging and tracing
framework.

Debugging Information
 You can activate debugging options in PMCD and most other PCP tools with the -D command-line
option. Supported options can be listed with the pmdbg command; see the pmdbg(1) man page. Setting
the debug options for PMCD in ${PCP_PMCDOPTIONS_PATH} might generate too much information
to be useful, especially if there are other clients and PMDAs connected to the PMCD process.

The PMCD debugging options can also be changed dynamically by storing a new value into the metric
pmcd.control.debug:

pmstore pmcd.control.debug 5

Most of the pcp_pmda library functions log additional information if the libpmda option is set within
the PMDA; see the PMDA(3) man page. The command-line argument -D is trapped by pmdaGetOptions
to set the global debugging control options. Adding tests within the PMDA for the appl0, appl1 and
appl2 trace flags permits different levels of information to be logged to the PMDA's log file.

All diagnostic, debugging, and tracing output from a PMDA should be written to the standard error stream.

Adding this segment of code to the simple_store metric causes a timestamped log message to be sent to
the current log file whenever pmstore attempts to change simple.numfetch and the PCP debugging
options have the appl0 option set as shown in Example 2.36, “ simple.numfetch in the Simple
PMDA”:

Example 2.36. simple.numfetch in the Simple PMDA

 case 0: /* simple.numfetch */
 x
 val = vsp->vlist[0].value.lval;
 if (val < 0) {
 sts = PM_ERR_SIGN;
 val = 0;
 }
 if (pmDebugOptions.appl0__) {
 pmNotifyErr(LOG_DEBUG,
 "simple: %d stored into numfetch", val);
 }
 numfetch = val;
 break;

Writing a PMDA

41

For a description of pmstore, see the pmstore(1) man page.

dbpmda Debug Utility
The dbpmda utility provides a simple interface to the PDU communication protocol. It allows daemon
and DSO PMDAs to be tested with most request types, while the PMDA process may be monitored with a
debugger, tracing utilities, and other diagnostic tools. The dbpmda(1) man page contains a sample session
with the simple PMDA.

Integration of a PMDA
Several steps are required to install (or remove) a PMDA from a production PMCD environment without
affecting the operation of other PMDAs or related visualization and logging tools.

The PMDA typically would have its own directory below ${PCP_PMDAS_DIR} into which several
files would be installed. In the description in the section called “Installing a PMDA”, the PMDA
of interest is assumed to be known by the name newbie, hence the PMDA directory would be
${PCP_PMDAS_DIR}/newbie.

Note

Any installation or removal of a PMDA involves updating files and directories that are typically
well protected. Hence the procedures described in this section must be executed as the superuser.

Installing a PMDA
A PMDA is fully installed when these tasks are completed:

• Help text has been installed in a place where the PMDA can find it, usually in the PMDA directory
${PCP_PMDAS_DIR}/newbie.

• The name space has been updated in the ${PCP_VAR_DIR}/pmns directory.

• The PMDA binary has been installed, usually in the directory ${PCP_PMDAS_DIR}/newbie.

• The ${PCP_PMCDCONF_PATH} file has been updated.

• The PMCD process has been restarted or notified (with a SIGHUP signal) that the new PMDA exists.

The Makefile should include an install target to compile and link the PMDA (as a DSO, or a daemon
or both) in the PMDA directory. The clobber target should remove any files created as a by-product
of the install target.

You may wish to use ${PCP_PMDAS_DIR}/simple/Makefile as a template for constructing a new
PMDA Makefile; changing the assignment of IAM from simple to newbie would account for most
of the required changes.

The Install script should make use of the generic procedures defined in the script
${PCP_SHARE_DIR}/lib/pmdaproc.sh, and may be as straightforward as the one used for the
trivial PMDA, shown in Example 2.37, “ Install Script for the Trivial PMDA”:

Example 2.37. Install Script for the Trivial PMDA

. ${PCP_DIR}/etc/pcp.env

Writing a PMDA

42

. ${PCP_SHARE_DIR}/lib/pmdaproc.sh

iam=trivial
pmda_interface=2

pmdaSetup
pmdainstall
exit

The variables, shown in Table 2.1, “Variables to Control Behavior of Generic pmdaproc.sh
Procedures”, may be assigned values to modify the behavior of the pmdaSetup and pmdainstall
procedures from ${PCP_SHARE_DIR}/lib/pmdaproc.sh.

Table 2.1. Variables to Control Behavior of Generic pmdaproc.sh Procedures

Shell Variable Use Default

$iam Name of the PMDA; assignment to this variable is
mandatory.

Example: iam=newbie

$dso_opt Can this PMDA be installed as a DSO? false

$daemon_opt Can this PMDA be installed as a daemon? true

$perl_opt Is this PMDA a perl script? false

$python_opt Is this PMDA a python script? false

$pipe_opt If installed as a daemon PMDA, is the default IPC via
pipes?

true

$socket_opt If installed as a daemon PMDA, is the default IPC via
an Internet socket?

false

$socket_inet_def If installed as a daemon PMDA, and the IPC method
uses an Internet socket, the default port number.

$ipc_prot IPC style for PDU exchanges involving a daemon
PMDA; binary or text.

binary

$check_delay Delay in seconds between installing PMDA and
checking if metrics are available.

3

$args Additional command-line arguments passed to a
daemon PMDA.

$pmda_interface Version of the libpcp_pmda library required, used
to determine the version for generating help text files.

1

$pmns_source The name of the PMNS file (by default relative to the
PMDA directory).

pmns

$pmns_name First-level name for this PMDA's metrics in the PMNS. $iam

$help_source The name of the help file (by default relative to the
PMDA directory).

help

$pmda_name The name of the executable for a daemon PMDA. pmda$iam

$dso_name The name of the shared library for a DSO PMDA. pmda$iam.
$dso_suffix

$dso_entry The name of the initialization function for a DSO
PMDA.

${iam}_init

Writing a PMDA

43

Shell Variable Use Default

$domain The numerical PMDA domain number (from
domain.h).

$SYMDOM The symbolic name of the PMDA domain number
(from domain.h).

$status Exit status for the shell script 0

In addition, the variable do_check will be set to reflect the intention to check the availability of the
metrics once the PMDA is installed. By default this variable is true however the command-line option
-Q to Install may be used to set the variable to false.

Obviously, for anything but the most trivial PMDA, after calling the pmdaSetup procedure, the
Install script should also prompt for any PMDA-specific parameters, which are typically accumulated
in the args variable and used by the pmdainstall procedure.

The detailed operation of the pmdainstall procedure involves the following tasks:

• Using default assignments, and interaction where ambiguity exists, determine the PMDA type (DSO or
daemon) and the IPC parameters, if any.

• Copy the $pmns_source file, replacing symbolic references to SYMDOM by the desired numeric
domain number from domain.

• Merge the PMDA's name space into the PCP name space at the non-leaf node identified by
$pmns_name.

• If any pmchart views can be found (files with names ending in “.pmchart”), copy these to the standard
directory (${PCP_VAR_DIR}/config/pmchart) with the “.pmchart” suffix removed.

• Create new help files from $help_source after replacing symbolic references to SYMDOM by the
desired numeric domain number from domain.

• Terminate the old daemon PMDA, if any.

• Use the Makefile to build the appropriate executables.

• Add the PMDA specification to PMCD's configuration file (${PCP_PMCDCONF_PATH}).

• Notify PMCD. To minimize the impact on the services PMCD provides, sending a SIGHUP to PMCD
forces it to reread the configuration file and start, restart, or remove any PMDAs that have changed
since the file was last read. However, if the newly installed PMDA must run using a different privilege
level to PMCD then PMCD must be restarted. This is because PMCD runs unprivileged after initially
starting the PMDAs.

• Check that the metrics from the new PMDA are available.

There are some PMDA changes that may trick PMCD into thinking nothing has changed, and not restarting
the PMDA. Most notable are changes to the PMDA executable. In these cases, you may need to explicitly
remove the PMDA as described in the section called “Removing a PMDA”, or more drastically, restart
PMCD as follows:

${PCP_RC_DIR}/pcp start

The files ${PCP_PMDAS_DIR}/*/Install provide a wealth of examples that may be used to
construct a new PMDA Install script.

Writing a PMDA

44

Removing a PMDA
The simplest way to stop a PMDA from running, apart from killing the process, is to remove the entry
from ${PCP_PMCDCONF_PATH} and signal PMCD (with SIGHUP) to reread its configuration file. To
completely remove a PMDA requires the reverse process of the installation, including an update of the
Performance Metrics Name Space (PMNS).

This typically involves a Remove script in the PMDA directory that uses the same common procedures
as the Install script described the section called “Installing a PMDA”.

The ${PCP_PMDAS_DIR}/*/Remove files provide a wealth of examples that may be used to construct
a new PMDA Remove script.

Configuring PCP Tools
 Most PCP tools have their own configuration file format for specifying which metrics to view or to log.
By using canned configuration files that monitor key metrics of the new PMDA, users can quickly see the
performance of the target system, as characterized by key metrics in the new PMDA.

Any configuration files that are created should be kept with the PMDA and installed into the appropriate
directories when the PMDA is installed.

As with all PCP customization, some of the most valuable tools can be created by defining views, scenes,
and control-panel layouts that combine related performance metrics from multiple PMDAs or multiple
hosts.

 Metrics suitable for on-going logging can be specified in templated pmlogger configuration files for
pmlogconf to automatically add to the pmlogger_daily recorded set; see the pmlogger(1), pmlogconf(1)
and pmlogger_daily(1) man pages.

 Parameterized alarm configurations can be created using the pmieconf facilities; see the pmieconf(1)
and pmie(1) man pages.

45

Chapter 3. PMAPI--The Performance
Metrics API

Table of Contents
Naming and Identifying Performance Metrics .. 46
Performance Metric Instances .. 46
Current PMAPI Context ... 47
Performance Metric Descriptions ... 48
Performance Metrics Values ... 51
Performance Event Metrics ... 53

Event Monitor Considerations ... 56
Event Collector Considerations .. 57

PMAPI Programming Style and Interaction ... 58
Variable Length Argument and Results Lists ... 58
Python Specific Issues ... 59
PMAPI Error Handling .. 60

PMAPI Procedural Interface ... 60
PMAPI Name Space Services ... 61
PMAPI Metrics Description Services .. 64
PMAPI Instance Domain Services .. 65
PMAPI Context Services .. 66
PMAPI Timezone Services ... 73
PMAPI Metrics Services .. 74
PMAPI Fetchgroup Services ... 76
PMAPI Record-Mode Services .. 78
PMAPI Archive-Specific Services .. 82
PMAPI Time Control Services .. 84
PMAPI Ancillary Support Services .. 85

PMAPI Programming Issues and Examples ... 92
Symbolic Association between a Metric's Name and Value ... 93
Initializing New Metrics ... 94
Iterative Processing of Values ... 94
Accommodating Program Evolution ... 95
Handling PMAPI Errors ... 95
Compiling and Linking PMAPI Applications ... 97

 This chapter describes the Performance Metrics Application Programming Interface (PMAPI) provided
with Performance Co-Pilot (PCP).

The PMAPI is a set of functions and data structure definitions that allow client applications to access
performance data from one or more Performance Metrics Collection Daemons (PMCDs) or from PCP
archive logs. The PCP utilities are all written using the PMAPI.

The most common use of PCP includes running performance monitoring utilities on a workstation (the
monitoring system) while performance data is retrieved from one or more remote collector systems by
a number of PCP processes. These processes execute on both the monitoring system and the collector
systems. The collector systems are typically servers, and are the targets for the performance investigations.

In the development of the PMAPI the most important question has been, “How easily and quickly will
this API enable the user to build new performance tools, or exploit existing tools for newly available

PMAPI--The
Performance Metrics API

46

performance metrics?” The PMAPI and the standard tools that use the PMAPI have enjoyed a symbiotic
evolution throughout the development of PCP.

It will be convenient to differentiate between code that uses the PMAPI and code that implements the
services of the PMAPI. The former will be termed “above the PMAPI” and the latter “below the PMAPI.”

Naming and Identifying Performance Metrics
 Across all of the supported performance metric domains, there are a large number of performance metrics.
Each metric has its own description, format, and semantics. PCP presents a uniform interface to these
metrics above the PMAPI, independent of the source of the underlying metric data. For example, the
performance metric hinv.physmem has a single 32-bit unsigned integer value, representing the number
of megabytes of physical memory in the system, while the performance metric disk.dev.total has
one 32-bit unsigned integer value per disk spindle, representing the cumulative count of I/O operations
involving each associated disk spindle. These concepts are described in greater detail in the section called
“Domains, Metrics, Instances and Labels”.

For brevity and efficiency, internally PCP avoids using names for performance metrics, and instead uses an
identification scheme that unambiguously associates a single integer with each known performance metric.
This integer is known as a Performance Metric Identifier, or PMID. For functions using the PMAPI, a
PMID is defined and manipulated with the typedef pmID.

Below the PMAPI, the integer value of the PMID has an internal structure that reflects the details of the
PMCD and PMDA architecture, as described in the section called “Metrics”.

Above the PMAPI, a Performance Metrics Name Space (PMNS) is used to provide a hierarchic
classification of external metric names, and a one-to-one mapping of external names to internal PMIDs.
A more detailed description of the PMNS can be found in the Performance Co-Pilot User's and
Administrator's Guide.

The default PMNS comes from the performance metrics source, either a PMCD process or a PCP archive.
This PMNS always reflects the available metrics from the performance metrics source

Performance Metric Instances
When performance metric values are returned across the PMAPI to a requesting application, there may
be more than one value for a particular metric; for example, independent counts for each CPU, or each
process, or each disk, or each system call type, and so on. This multiplicity of values is not enumerated in
the Name Space, but rather when performance metrics are delivered across the PMAPI.

The notion of metric instances is really a number of related concepts, as follows:

• A particular performance metric may have a set of associated values or instances.

• The instances are differentiated by an instance identifier.

• An instance identifier has an internal encoding (an integer value) and an external encoding (a
corresponding external name or label).

• The set of all possible instance identifiers associated with a performance metric on a particular host
constitutes an instance domain.

• Several performance metrics may share the same instance domain.

PMAPI--The
Performance Metrics API

47

Consider Example 3.1, “Metrics Sharing the Same Instance Domain”:

Example 3.1. Metrics Sharing the Same Instance Domain

 $ pminfo -f filesys.free

 filesys.free
 inst [1 or “/dev/disk0”] value 1803
 inst [2 or “/dev/disk1”] value 22140
 inst [3 or “/dev/disk2”] value 157938

The metric filesys.free has three values, currently 1803, 22140, and 157938. These values are
respectively associated with the instances identified by the internal identifiers 1, 2 and 3, and the external
identifiers /dev/disk0, /dev/disk1, and /dev/disk2. These instances form an instance domain
that is shared by the performance metrics filesys.capacity, filesys.used, filesys.free,
filesys.mountdir, and so on.

Each performance metric is associated with an instance domain, while each instance domain may be
associated with many performance metrics. Each instance domain is identified by a unique value, as
defined by the following typedef declaration:

 typedef unsigned long pmInDom;

The special instance domain PM_INDOM_NULL is reserved to indicate that the metric has a single value (a
singular instance domain). For example, the performance metric mem.freemem always has exactly one
value. Note that this is semantically different to a performance metric like kernel.percpu.cpu.sys
that has a non-singular instance domain, but may have only one value available; for example, on a system
with a single processor.

In the results returned above the PMAPI, each individual instance within an instance domain is identified
by an internal integer instance identifier. The special instance identifier PM_IN_NULL is reserved for the
single value in a singular instance domain. Performance metric values are delivered across the PMAPI as
a set of instance identifier and value pairs.

The instance domain of a metric may change with time. For example, a machine may be shut down, have
several disks added, and be rebooted. All performance metrics associated with the instance domain of
disk devices would contain additional values after the reboot. The difficult issue of transient performance
metrics means that repeated requests for the same PMID may return different numbers of values, or some
changes in the particular instance identifiers returned. This means applications need to be aware that metric
instantiation is guaranteed to be valid only at the time of collection.

Note

Some instance domains are more dynamic than others. For example, consider the instance
domains behind the performance metrics proc.memory.rss (one instance per process),
swap.free (one instance per swap partition) and kernel.percpu.cpu.intr (one
instance per CPU).

Current PMAPI Context
When performance metrics are retrieved across the PMAPI, they are delivered in the context of a particular
source of metrics, a point in time, and a profile of desired instances. This means that the application making

PMAPI--The
Performance Metrics API

48

the request has already negotiated across the PMAPI to establish the context in which the request should
be executed.

A metric's source may be the current performance data from a particular host (a live or real-time source),
or a set of archive logs of performance data collected by pmlogger at some remote host or earlier time
(a retrospective or archive source). The metric's source is specified when the PMAPI context is created
by calling the pmNewContext function. This function returns an opaque handle which can be used to
identify the context.

The collection time for a performance metric is always the current time of day for a real-time source, or
current position for an archive source. For archives, the collection time may be set to an arbitrary time
within the bounds of the set of archive logs by calling the pmSetMode function.

The last component of a PMAPI context is an instance profile that may be used to control which particular
instances from an instance domain should be retrieved. When a new PMAPI context is created, the initial
state expresses an interest in all possible instances, to be collected at the current time. The instance profile
can be manipulated using the pmAddProfile and pmDelProfile functions.

The current context can be changed by passing a context handle to pmUseContext. If a live context
connection fails, the pmReconnectContext function can be used to attempt to reconnect it.

Performance Metric Descriptions
For each defined performance metric, there exists metadata describing it.

• A performance metric description (pmDesc structure) that describes the format and semantics of the
performance metric.

• Help text associated with the metric and any associated instance domain.

• Performance metric labels (name:value pairs in pmLabelSet structures) associated with the metric and
any associated instances.

The pmDesc structure, in Example 3.2, “ pmDesc Structure”, provides all of the information required to
interpret and manipulate a performance metric through the PMAPI. It has the following declaration:

Example 3.2. pmDesc Structure

/* Performance Metric Descriptor */
typedef struct {
 pmID pmid; /* unique identifier */
 int type; /* base data type (see below) */
 pmInDom indom; /* instance domain */
 int sem; /* semantics of value (see below) */
 pmUnits units; /* dimension and units (see below) */
} pmDesc;

The type field in the pmDesc structure describes various encodings of a metric's value. Its value will
be one of the following constants:

/* pmDesc.type - data type of metric values */
#define PM_TYPE_NOSUPPORT -1 /* not in this version */
#define PM_TYPE_32 0 /* 32-bit signed integer */
#define PM_TYPE_U32 1 /* 32-bit unsigned integer */
#define PM_TYPE_64 2 /* 64-bit signed integer */

PMAPI--The
Performance Metrics API

49

#define PM_TYPE_U64 3 /* 64-bit unsigned integer */
#define PM_TYPE_FLOAT 4 /* 32-bit floating point */
#define PM_TYPE_DOUBLE 5 /* 64-bit floating point */
#define PM_TYPE_STRING 6 /* array of char */
#define PM_TYPE_AGGREGATE 7 /* arbitrary binary data */
#define PM_TYPE_AGGREGATE_STATIC 8 /* static pointer to aggregate */
#define PM_TYPE_EVENT 9 /* packed pmEventArray */
#define PM_TYPE_UNKNOWN 255 /* used in pmValueBlock not pmDesc */

By convention PM_TYPE_STRING is interpreted as a classic C-style null byte terminated string.

Event records are encoded as a packed array of strongly-typed, well-defined records within a pmResult
structure, using a container metric with a value of type PM_TYPE_EVENT.

If the value of a performance metric is of type PM_TYPE_STRING, PM_TYPE_AGGREGATE,
PM_TYPE_AGGREGATE_STATIC, or PM_TYPE_EVENT, the interpretation of that value is unknown
to many PCP components. In the case of the aggregate types, the application using the value and the
Performance Metrics Domain Agent (PMDA) providing the value must have some common understanding
about how the value is structured and interpreted. Strings can be manipulated using the standard C libraries.
Event records contain timestamps, event flags and event parameters, and the PMAPI provides support for
unpacking an event record - see the pmUnpackEventRecords(3) man page for details. Further discussion
on event metrics and event records can be found in the section called “Performance Event Metrics”.

 PM_TYPE_NOSUPPORT indicates that the PCP collection framework knows about the metric, but the
corresponding service or application is either not configured or is at a revision level that does not provide
support for this performance metric.

The semantics of the performance metric is described by the sem field of a pmDesc structure and uses
the following constants:

/* pmDesc.sem - semantics of metric values */
#define PM_SEM_COUNTER 1 /* cumulative count, monotonic increasing */
#define PM_SEM_INSTANT 3 /* instantaneous value continuous domain */
#define PM_SEM_DISCRETE 4 /* instantaneous value discrete domain */

 Each value for a performance metric is assumed to be drawn from a set of values that can be described in
terms of their dimensionality and scale by a compact encoding, as follows:

• The dimensionality is defined by a power, or index, in each of three orthogonal dimensions: Space,
Time, and Count (dimensionless). For example, I/O throughput is Space1.Time-1, while the running
total of system calls is Count1, memory allocation is Space1, and average service time per event is
Time1.Count-1.

• In each dimension, a number of common scale values are defined that may be used to better encode
ranges that might otherwise exhaust the precision of a 32-bit value. For example, a metric with dimension
Space1.Time-1 may have values encoded using the scale megabytes per second.

This information is encoded in the pmUnits data structure, shown in Example 3.3, “ pmUnits and
pmDesc Structures”. It is embedded in the pmDesc structure :

The structures are as follows:

Example 3.3. pmUnits and pmDesc Structures

/*
 * Encoding for the units (dimensions and

PMAPI--The
Performance Metrics API

50

 * scale) for Performance Metric Values
 *
 * For example, a pmUnits struct of
 * { 1, -1, 0, PM_SPACE_MBYTE, PM_TIME_SEC, 0 }
 * represents Mbytes/sec, while
 * { 0, 1, -1, 0, PM_TIME_HOUR, 6 }
 * represents hours/million-events
 */
typedef struct {
 int pad:8;
 int scaleCount:4; /* one of PM_COUNT_* below */
 int scaleTime:4; /* one of PM_TIME_* below */
 int scaleSpace:4; /* one of PM_SPACE_* below */
 int dimCount:4; /* event dimension */
 int dimTime:4; /* time dimension */
 int dimSpace:4; /* space dimension
} pmUnits; /* dimensional units and scale of value */
/* pmUnits.scaleSpace */
#define PM_SPACE_BYTE 0 /* bytes */
#define PM_SPACE_KBYTE 1 /* kibibytes (1024) */
#define PM_SPACE_MBYTE 2 /* mebibytes (1024^2) */
#define PM_SPACE_GBYTE 3 /* gibibytes (1024^3) */
#define PM_SPACE_TBYTE 4 /* tebibytes (1024^4) */
#define PM_SPACE_PBYTE 5 /* pebibytes (1024^5) */
#define PM_SPACE_EBYTE 6 /* exbibytes (1024^6) */
#define PM_SPACE_ZBYTE 7 /* zebibytes (1024^7) */
#define PM_SPACE_YBYTE 8 /* yobibytes (1024^8) */
/* pmUnits.scaleTime */
#define PM_TIME_NSEC 0 /* nanoseconds */
#define PM_TIME_USEC 1 /* microseconds */
#define PM_TIME_MSEC 2 /* milliseconds */
#define PM_TIME_SEC 3 /* seconds */
#define PM_TIME_MIN 4 /* minutes */
#define PM_TIME_HOUR 5 /* hours */
/*
 * pmUnits.scaleCount (e.g. count events, syscalls,
 * interrupts, etc.) -- these are simply powers of 10,
 * and not enumerated here.
 * e.g. 6 for 10^6, or -3 for 10^-3
 */
#define PM_COUNT_ONE 0 /* 1 */

Metric and instance domain help text are simple ASCII strings. As a result, there are no special data
structures associated with them. There are two forms of help text available for each metric and instance
domain, however - one-line and long form.

Example 3.4. Help Text Flags

#define PM_TEXT_ONELINE 1
#define PM_TEXT_HELP 2

Labels are stored and communicated within PCP using JSONB formatted strings in the json field of
a pmLabelSet structure. This format is a restricted form of JSON suitable for indexing and other
operations. In JSONB form, insignificant whitespace is discarded, and order of label names is not

PMAPI--The
Performance Metrics API

51

preserved. Within the PMCS, however, a lexicographically sorted key space is always maintained.
Duplicate label names are not permitted. The label with highest precedence in the label hierarchy (context
level labels, domain level labels, and so on) is the only one presented.

Example 3.5. pmLabel and pmLabelSet Structures

typedef struct {
 uint name : 16; /* label name offset in JSONB string */
 uint namelen : 8; /* length of name excluding the null */
 uint flags : 8; /* information about this label */
 uint value : 16; /* offset of the label value */
 uint valuelen : 16; /* length of value in bytes */
} pmLabel;

/* flags identifying label hierarchy classes. */
#define PM_LABEL_CONTEXT (1<<0)
#define PM_LABEL_DOMAIN (1<<1)
#define PM_LABEL_INDOM (1<<2)
#define PM_LABEL_CLUSTER (1<<3)
#define PM_LABEL_ITEM (1<<4)
#define PM_LABEL_INSTANCES (1<<5)
/* flag identifying extrinsic labels. */
#define PM_LABEL_OPTIONAL (1<<7)

typedef struct {
 uint inst; /* PM_IN_NULL or the instance ID */
 int nlabels; /* count of labels or error code */
 char *json; /* JSONB formatted labels string */
 uint jsonlen : 16; /* JSON string length byte count */
 uint padding : 16; /* zero, reserved for future use */
 pmLabel *labels; /* indexing into the JSON string */
} pmLabelSet;

The pmLabel labels array provides name and value indexes and lengths in the json string.

The flags field is a bitfield identifying the hierarchy level and whether this name:value pair is intrinsic
(optional) or extrinsic (part of the mandatory, identifying metadata for the metric or instance). All other
fields are offsets and lengths in the JSONB string from an associated pmLabelSet structure.

Performance Metrics Values
 An application may fetch (or store) values for a set of performance metrics, each with a set of associated
instances, using a single pmFetch (or pmStore) function call. To accommodate this, values are delivered
across the PMAPI in the form of a tree data structure, rooted at a pmResult structure. This encoding
is illustrated in Figure 3.1, “A Structured Result for Performance Metrics from pmFetch”, and uses the
component data structures in Example 3.6, “ pmValueBlock and pmValue Structures”:

Example 3.6. pmValueBlock and pmValue Structures

typedef struct {
 int inst; /* instance identifier */
 union {
 pmValueBlock *pval; /* pointer to value-block */

PMAPI--The
Performance Metrics API

52

 int lval; /* integer value insitu */
 } value;
} pmValue;

Figure 3.1. A Structured Result for Performance Metrics from pmFetch

pmResult

pmValueSet

pmValueSet

timestamp

numpmid (N)

pmValueSet[N] int (in-situ)
numval (M)

pmid

valfmt

inst

...

...

pmValue[M]

inst

...

...

numval (1)

pmid

valfmt

value

inst

value

pmValueBlock
type length

The internal instance identifier is stored in the inst element. If a value for a particular metric-instance
pair is a 32-bit integer (signed or unsigned), then it will be stored in the lval element. If not, the value
will be in a pmValueBlock structure, as shown in Example 3.7, “pmValueBlock Structure”, and will
be located via pval:

The pmValueBlock structure is as follows:

Example 3.7. pmValueBlock Structure

typedef struct {
 unsigned int vlen : 24; /* bytes for vtype/vlen + vbuf */
 unsigned int vtype : 8; /* value type */
 char vbuf[1]; /* the value */
} pmValueBlock;

The length of the pmValueBlock (including the vtype and vlen fields) is stored in vlen. Despite
the prototype declaration of vbuf, this array really accommodates vlen minus sizeof(vlen) bytes. The
vtype field encodes the type of the value in the vbuf[] array, and is one of the PM_TYPE_* macros
defined in <pcp/pmapi.h>.

A pmValueSet structure, as shown in Example 3.8, “ pmValueSet Structure”, contains all of the
values to be returned from pmFetch for a single performance metric identified by the pmid field.

Example 3.8. pmValueSet Structure

typedef struct {

PMAPI--The
Performance Metrics API

53

 pmID pmid; /* metric identifier */
 int numval; /* number of values */
 int valfmt; /* value style, insitu or ptr */
 pmValue vlist[1]; /* set of instances/values */
} pmValueSet;

If positive, the numval field identifies the number of value-instance pairs in the vlist array (despite
the prototype declaration of size 1). If numval is zero, there are no values available for the associated
performance metric and vlist[0] is undefined. A negative value for numval indicates an error
condition (see the pmErrStr(3) man page) and vlist[0] is undefined. The valfmt field has the value
PM_VAL_INSITU to indicate that the values for the performance metrics should be located directly via
the lval member of the value union embedded in the elements of vlist; otherwise, metric values are
located indirectly via the pval member of the elements of vlist.

The pmResult structure, as shown in Example 3.9, “ pmResult Structure”, contains a time stamp and
an array of numpmid pointers to pmValueSet.

Example 3.9. pmResult Structure

/* Result returned by pmFetch() */
typedef struct {
 struct timeval timestamp; /* stamped by collector */
 int numpmid; /* number of PMIDs */
 pmValueSet *vset[1]; /* set of value sets */
} pmResult

There is one pmValueSet pointer per PMID, with a one-to-one correspondence to the set of requested
PMIDs passed to pmFetch.

Along with the metric values, the PMAPI returns a time stamp with each pmResult that serves to identify
when the performance metric values were collected. The time is in the format returned by gettimeofday
and is typically very close to the time when the metric values were extracted from their respective domains.

Note

There is a question of exactly when individual metrics may have been collected, especially
given their origin in potentially different performance metric domains, and variability in metric
updating frequency by individual PMDAs. PCP uses a pragmatic approach, in which the
PMAPI implementation returns all metrics with values accurate as of the time stamp, to the
maximum degree possible, and PMCD demands that all PMDAs deliver values within a small
realtime window. The resulting inaccuracy is small, and the additional burden of accurate
individual timestamping for each returned metric value is neither warranted nor practical (from
an implementation viewpoint).

The PMAPI provides functions to extract, rescale, and print values from the above structures; refer to the
section called “PMAPI Ancillary Support Services”.

Performance Event Metrics
In addition to performance metric values which are sampled by monitor tools, PCP supports the notion
of performance event metrics which occur independently to any sampling frequency. These event metrics
(PM_TYPE_EVENT) are delivered using a novel approach which allows both sampled and event trace
data to be delivered via the same live wire protocol, the same on-disk archive format, and fundamentally

PMAPI--The
Performance Metrics API

54

using the same PMAPI services. In other words, a monitor tool may be sample and trace, simultaneously,
using the PMAPI services discussed here.

Event metrics are characterised by certain key properties, distinguishing them from the other metric types
(counters, instantaneous, and discrete):

• Occur at times outside of any monitor tools control, and often have a fine-grained timestamp associated
with each event.

• Often have parameters associated with the event, which further describe each individual event, as shown
in Figure 3.2, “Sample write(2) syscall entry point encoding”.

• May occur in very rapid succession, at rates such that both the collector and monitor sides may not be
able to track all events. This property requires the PCP protocol to support the notion of "dropped" or
"missed" events.

• There may be inherent relationships between events, for example the start and commit (or rollback)
of a database transaction could be separate events, linked by a common transaction identifier (which
would likely also be one of the parameters to each event). Begin-end and parent-child relationships are
relatively common, and these properties require the PCP protocol to support the notion of "flags" that
can be associated with events.

These differences aside, the representation of event metrics within PCP shares many aspects of the other
metric types - event metrics appear in the Name Space (as do each of the event parameters), each has an
associated Performance Metric Identifier and Descriptor, may have an instance domain associated with
them, and may be recorded by pmlogger for subsequent replay.

Figure 3.2. Sample write(2) syscall entry point encoding

write (7, "It was the best of times, ...", 4096);

PCP Metrics:

event.syscall.write_entry (PM_TYPE_EVENT)

event.syscall.params.fd (PM_TYPE_32)

event.syscall.params.user_buffer (PM_TYPE_AGGREGATE)

event.syscall.params.buffer_size (PM_TYPE_64, PM_SPACE_BYTE)

event.syscall.params.pid (PM_TYPE_32)

Event metrics and their associated information (parameters, timestamps, flags, and so on) are delivered
to monitoring tools alongside sampled metrics as part of the pmResult structure seen previously in
Example 3.9, “ pmResult Structure”.

The semantics of pmFetch(3) specifying an event metric PMID are such that all events observed on the
collector since the previous fetch (by this specific monitor client) are to transfered to the monitor. Each
event will have the metadata described earlier encoded with it (timestamps, flags, and so on) for each
event. The encoding of the series of events involves a compound data structure within the pmValueSet
associated with the event metric PMID, as illustrated in Figure 3.3, “Result Format for Event Performance
Metrics from pmFetch”.

PMAPI--The
Performance Metrics API

55

Figure 3.3. Result Format for Event Performance Metrics from pmFetch

pmEventArray
pmResult

pmValueSet

pmValueSet

timestamp

numpmid (N)

pmValueSet[N]
numval (M)

pmid

valfmt

inst

...

...

pmValue[M]

inst

...

...

numval (1)

pmid

valfmt

inst

type length

nrecords (X)

pmEventRecord[X]
...

...

pmEventRecord

pmEventRecord

timestamp

flags

nparams (Y)

pmEventParameter[Y]
...
...

pmid

pmid

timestamp

[MISSED] flag

[MISSED] count

value

value

At the highest level, the "series of events" is encapsulated within a pmEventArray structure, as in
Example 3.10, “ pmEventArray and pmEventRecord Structures”:

Example 3.10. pmEventArray and pmEventRecord Structures

typedef struct {
 pmTimeval er_timestamp; /* 2 x 32-bit timestamp format */
 unsigned int er_flags; /* event record characteristics */
 int er_nparams; /* number of ea_param[] entries */
 pmEventParameter er_param[1];
} pmEventRecord;

typedef struct {
 unsigned int ea_len : 24; /* bytes for type/len + records */
 unsigned int ea_type : 8; /* value type */
 int ea_nrecords; /* number of ea_record entries */
 pmEventRecord ea_record[1];
} pmEventArray;

Note that in the case of dropped events, the pmEventRecord structure is used to convey the number of
events dropped - er_flags is used to indicate the presence of dropped events, and er_nparams is
used to hold a count. Unsurprisingly, the parameters (er_param) will be empty in this situation.

The pmEventParameter structure is as follows:

Example 3.11. pmEventParameter Structure

typedef struct {
 pmID ep_pmid; /* parameter identifier */
 unsigned int ep_type; /* value type */
 int ep_len; /* bytes for type/len + vbuf */
 /* actual value (vbuf) here */
} pmEventParameter;

PMAPI--The
Performance Metrics API

56

Event Monitor Considerations
In order to simplify the decoding of event record arrays, the PMAPI provides the
pmUnpackEventRecords function for monitor tools. This function is passed a pointer to a pmValueSet
associated with an event metric (within a pmResult) from a pmFetch(3). For a given instance of that event
metric, it returns an array of "unpacked" pmResult structures for each event.

The control information (flags and optionally dropped events) is included as derived metrics within
each result structure. As such, these values can be queried similarly to other metrics, using their names
- event.flags and event.missed. Note that these metrics will only exist after the first call to
pmUnpackEventRecords.

An example of decoding event metrics in this way is presented in Example 3.12, “Unpacking Event
Records from an Event Metric pmValueSet”:

Example 3.12. Unpacking Event Records from an Event Metric pmValueSet

enum { event_flags = 0, event_missed = 1 };
static char *metadata[] = { "event.flags", "event.missed" };
static pmID metapmid[2];

void dump_event(pmValueSet *vsp, int idx)
{
 pmResult **res;
 int r, sts, nrecords;

 nrecords = pmUnpackEventRecords(vsp, idx, &res);
 if (nrecords < 0)
 fprintf(stderr, " pmUnpackEventRecords: %s\n", pmErrStr(nrecords));
 else
 printf(" %d event records\n", nrecords);

 if ((sts = pmLookupName(2, &metadata, &metapmid)) < 0) {
 fprintf(stderr, "Event metadata error: %s\n", pmErrStr(sts));
 exit(1);
 }

 for (r = 0; r < nrecords; r++)
 dump_event_record(res, r);

 if (nrecords >= 0)
 pmFreeEventResult(res);
}

void dump_event_record(pmResult *res, int r)
{
 int p;

 pmPrintStamp(stdout, &res[r]->timestamp);
 if (res[r]->numpmid == 0)
 printf(" ==> No parameters\n");
 for (p = 0; p < res[r]->numpmid; p++) {
 pmValueSet *vsp = res[r]->vset[p];

PMAPI--The
Performance Metrics API

57

 if (vsp->numval < 0) {
 int error = vsp->numval;
 printf("%s: %s\n", pmIDStr(vsp->pmid), pmErrStr(error));
 } else if (vsp->pmid == metapmid[event_flags]) {
 int flags = vsp->vlist[0].value.lval;
 printf(" flags 0x%x (%s)\n", flags, pmEventFlagsStr(flags));
 } else if (vsp->pmid == metapmid[event_missed]) {
 int count = vsp->vlist[0].value.lval;
 printf(" ==> %d missed event records\n", count);
 } else {
 dump_event_record_parameters(vsp);
 }
 }
}

void dump_event_record_parameters(pmValueSet *vsp)
{
 pmDesc desc;
 char *name;
 int sts, j;

 if ((sts = pmLookupDesc(vsp->pmid, &desc)) < 0) {
 fprintf(stderr, "pmLookupDesc: %s\n", pmErrStr(sts));
 } else
 if ((sts = pmNameID(vsp->pmid, &name)) < 0) {
 fprintf(stderr, "pmNameID: %s\n", pmErrStr(sts));
 } else {
 printf("parameter %s", name);
 for (j = 0; j < vsp->numval; j++) {
 pmValue *vp = &vsp->vlist[j];
 if (vsp->numval > 1) {
 printf("[%d]", vp->inst);
 pmPrintValue(stdout, vsp->valfmt, desc.type, vp, 1);
 putchar('\n');
 }
 }
 free(name);
 }
}

Event Collector Considerations
There is a feedback mechanism that is inherent in the design of the PCP monitor-collector event metric
value exchange, which protects both monitor and collector components from becoming overrun by high
frequency event arrivals. It is important that PMDA developers are aware of this mechanism and all of
its implications.

Monitor tools can query new event arrival on whatever schedule they choose. There are no guarantees that
this is a fixed interval, and no way for the PMDA to attempt to dictate this interval (nor should there be).

As a result, a PMDA that provides event metrics must:

• Track individual client connections using the per-client PMDA extensions (PMDA_INTERFACE_5 or
later).

PMAPI--The
Performance Metrics API

58

• Queue events, preferably in a memory-efficient manner, such that each interested monitor tool (there
may be more than one) is informed of those events that arrived since their last request.

• Control the memory allocated to in-memory event storage. If monitors are requesting new events too
slowly, compared to event arrival on the collector, the "missed events" feedback mechanism must be
used to inform the monitor. This mechanism is also part of the model by which a PMDA can fix the
amount of memory it uses. Once a fixed space is consumed, events can be dropped from the tail of the
queue for each client, provided a counter is incremented and the client is subsequently informed.

Note

It is important that PMDAs are part of the performance solution, and not part of the performance
problem! With event metrics, this is much more difficult to achieve than with counters or other
sampled values.

There is certainly elegance to this approach for event metrics, and the way they dovetail with other, sampled
performance metrics is unique to PCP. Notice also how the scheme naturally allows multiple monitor tools
to consume the same events, no matter what the source of events is. The downside to this flexibility is
increased complexity in the PMDA when event metrics are used.

This complexity comes in the form of event queueing and memory management, as well as per-client state
tracking. Routines are available as part of the pcp_pmda library to assist, however - refer to the man page
entries for pmdaEventNewQueue(3) and pmdaEventNewClient(3) for further details.

One final set of helper APIs is available to PMDA developers who incorporate event metrics. There
is a need to build the pmEventArray structure, introduced in Example 3.10, “ pmEventArray
and pmEventRecord Structures”. This can be done directly, or using the helper routine
pmdaEventNewArray(3). If the latter, simpler model is chosen, the closely related routines
pmdaEventAddRecord, pmdaEventAddParam and pmdaEventAddMissedRecord would also
usually be used.

Depending on the nature of the events being exported by a PMDA, it can be desirable to perform filtering
of events on the collector system. This reduces the amount of event traffic between monitor and collector
systems (which may be filtered further on the monitor system, before presenting results). Some PMDAs
have had success using the pmStore(3) mechanism to allow monitor tools to send a filter to the PMDA -
using either a special control metric for the store operation, or the event metric itself. The filter sent will
depend on the event metric, but it might be a regular expression, or a tracing script, or something else.

This technique has also been used to enable and disable event tracing entirely. It is often appropriate to
make use of authentication and user credentials when providing such a facility (PMDA_INTERFACE_6
or later).

PMAPI Programming Style and Interaction
The following sections describe the PMAPI programming style:

• Variable length argument and results lists

• Python specific issues

• PMAPI error handling

Variable Length Argument and Results Lists
 All arguments and results involving a “list of something” are encoded as an array with an associated
argument or function value to identify the number of elements in the array. This encoding scheme avoids

PMAPI--The
Performance Metrics API

59

both the varargs approach and sentinel-terminated lists. Where the size of a result is known at the time
of a call, it is the caller's responsibility to allocate (and possibly free) the storage, and the called function
assumes that the resulting argument is of an appropriate size.

 Where a result is of variable size and that size cannot be known in advance (for example,
pmGetChildren, pmGetInDom, pmNameInDom, pmNameID, pmLookupText, pmLookupLabels
and pmFetch), the underlying implementation uses dynamic allocation through malloc in the called
function, with the caller responsible for subsequently calling free to release the storage when no longer
required.

In the case of the result from pmFetch, there is a function (pmFreeResult) to release the storage, due to
the complexity of the data structure and the need to make multiple calls to free in the correct sequence.
Similarly, the pmLookupLabels function has an associated function (pmFreeLabelSets) to release the
storage.

As a general rule, if the called function returns an error status, then no allocation is done, the pointer to the
variable sized result is undefined, and free, pmFreeLabelSets, or pmFreeResult should not be called.

Python Specific Issues
 A pcp client may be written in the python language by making use of the python bindings for PMAPI. The
bindings use the python ctypes module to provide an interface to the PMAPI C language data structures.
The primary imports that are needed by a client are:

• cpmapi which provides access to PMAPI constants

import cpmapi as c_api

• pmapi which provides access to PMAPI functions and data structures

from pcp import pmapi

• pmErr which provides access to the python bindings exception handler

from pcp.pmapi import pmErr

• pmgui which provides access to PMAPI record mode functions

from pcp import ppmgui

Creating and destroying a PMAPI context in the python environment is done by creating and destroying
an object of the pmapi class. This is done in one of two ways, either directly:

 context = pmapi.pmContext()

or by automated processing of the command line arguments (refer to the pmGetOptions man page for
greater detail).

 options = pmapi.pmOptions(...)
 context = pmapi.pmContext.fromOptions(options, sys.argv)

Most PMAPI C functions have python equivalents with similar, although not identical, call signatures.
Some of the python functions do not return native python types, but instead return native C types wrapped
by the ctypes library. In most cases these types are opaque, or nearly so; for example pmid:

 pmid = context.pmLookupName("mem.freemem")

PMAPI--The
Performance Metrics API

60

 desc = context.pmLookupDescs(pmid)
 result = context.pmFetch(pmid)
 ...

See the comparison of a standalone C and python client application in Example 3.25, “PMAPI Error
Handling”.

PMAPI Error Handling
Where error conditions may arise, the functions that compose the PMAPI conform to a single, simple error
notification scheme, as follows:

• The function returns an int. Values greater than or equal to zero indicate no error, and perhaps some
positive status: for example, the number of items processed.

• Values less than zero indicate an error, as determined by a global table of error conditions and messages.

A PMAPI library function along the lines of strerror is provided to translate error conditions into error
messages; see the pmErrStr(3) and pmErrStr_r(3) man pages. The error condition is returned as the
function value from a previous PMAPI call; there is no global error indicator (unlike errno). This is to
accommodate multi-threaded performance tools.

The available error codes may be displayed with the following command:

 pmerr -l

Where possible, PMAPI routines are made as tolerant to failure as possible. In particular, routines which
deal with compound data structures - results structures, multiple name lookups in one call and so on, will
attempt to return all data that can be returned successfully, and errors embedded in the result where there
were (partial) failures. In such cases a negative failure return code from the routine indicates catastrophic
failure, otherwise success is returned and indicators for the partial failures are returned embedded in the
results.

PMAPI Procedural Interface
The following sections describe all of the PMAPI functions that provide access to the PCP infrastructure
on behalf of a client application:

• PMAPI Name Space services

• PMAPI metric description services

• PMAPI instance domain services

• PMAPI context services

• PMAPI timezone services

• PMAPI metrics services

• PMAPI fetchgroup services

• PMAPI record-mode services

• PMAPI archive-specific services

PMAPI--The
Performance Metrics API

61

• PMAPI time control services

• PMAPI ancillary support services

PMAPI Name Space Services
The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) Name Space services.

pmGetChildren Function

int pmGetChildren(const char*name, char***offspring)
Python:
[name1, name2...] = pmGetChildren(name)

 Given a full pathname to a node in the current PMNS, as identified by name, return through offspring
a list of the relative names of all the immediate descendents of name in the current PMNS. As a special
case, if name is an empty string, (that is, "" but not NULL or (char *)0), the immediate descendents
of the root node in the PMNS are returned.

For the python bindings a tuple containing the relative names of all the immediate descendents of name
in the current PMNS is returned.

Normally, pmGetChildren returns the number of descendent names discovered, or a value less than zero
for an error. The value zero indicates that the name is valid, and associated with a leaf node in the PMNS.

The resulting list of pointers (offspring) and the values (relative metric names) that the pointers
reference are allocated by pmGetChildren with a single call to malloc, and it is the responsibility of the
caller to issue a free(offspring) system call to release the space when it is no longer required. When
the result of pmGetChildren is less than one, offspring is undefined (no space is allocated, and so
calling free is counterproductive).

The python bindings return a tuple containing the relative names of all the immediate descendents of name,
where name is a full pathname to a node in the current PMNS.

pmGetChildrenStatus Function

int pmGetChildrenStatus(const char *name, char ***offspring, int **status)
Python:
([name1, name2...],[status1, status2...]) = pmGetChildrenStatus(name)

The pmGetChildrenStatus function is an extension of pmGetChildren that optionally returns status
information about each of the descendent names.

Given a fully qualified pathname to a node in the current PMNS, as identified by name,
pmGetChildrenStatus returns by means of offspring a list of the relative names of all of the
immediate descendent nodes of name in the current PMNS. If name is the empty string (””), it returns
the immediate descendents of the root node in the PMNS.

If status is not NULL, then pmGetChildrenStatus also returns the status of each child by means of
status. This refers to either a leaf node (with value PMNS_LEAF_STATUS) or a non-leaf node (with
value PMNS_NONLEAF_STATUS).

Normally, pmGetChildrenStatus returns the number of descendent names discovered, or else a value less
than zero to indicate an error. The value zero indicates that name is a valid metric name, being associated
with a leaf node in the PMNS.

PMAPI--The
Performance Metrics API

62

The resulting list of pointers (offspring) and the values (relative metric names) that the pointers
reference are allocated by pmGetChildrenStatus with a single call to malloc, and it is the responsibility
of the caller to free(offspring) to release the space when it is no longer required. The same holds true
for the status array.

The python bindings return a tuple containing the relative names and statuses of all the immediate
descendents of name, where name is a full pathname to a node in the current PMNS.

pmGetPMNSLocation Function

int pmGetPMNSLocation(void)
Python:
int loc = pmGetPMNSLocation()

If an application needs to know where the origin of a PMNS is, pmGetPMNSLocation returns whether it is
an archive (PMNS_ARCHIVE), a local PMNS file (PMNS_LOCAL), or a remote PMCD (PMNS_REMOTE).
This information may be useful in determining an appropriate error message depending on PMNS location.

The python bindings return whether a PMNS is an archive cpmapi.PMNS_ARCHIVE, a local PMNS
file cpmapi.PMNS_LOCAL, or a remote PMCD cpmapi.PMNS_REMOTE. The constants are available
by importing cpmapi.

pmLoadNameSpace Function

int pmLoadNameSpace(const char *filename)
Python:
int status = pmLoadNameSpace(filename)

In the highly unusual situation that an application wants to force using a local Performance Metrics Name
Space (PMNS), the application can load the PMNS using pmLoadNameSpace.

The filename argument designates the PMNS of interest. For applications that do not require a tailored
Name Space, the special value PM_NS_DEFAULT may be used for filename, to force a default local
PMNS to be established. Externally, a PMNS is stored in an ASCII format.

The python bindings load a local tailored Name Space from filename.

Note

Do not use this routine in monitor tools. The distributed PMNS services avoid the need for a
local PMNS; so applications should not use pmLoadNameSpace. Without this call, the default
PMNS is the one at the source of the performance metrics (PMCD or an archive).

pmLookupName Function

int pmLookupName(int numpmid, char *namelist[], pmID pmidlist[])
Python:
c_uint pmid [] = pmLookupName("MetricName")
c_uint pmid [] = pmLookupName(("MetricName1", "MetricName2", ...))

Given a list in namelist containing numpmid full pathnames for performance metrics from the current
PMNS, pmLookupName returns the list of associated PMIDs through the pmidlist parameter. Invalid
metrics names are translated to the error PMID value of PM_ID_NULL.

PMAPI--The
Performance Metrics API

63

The result from pmLookupName is the number of names translated in the absence of errors, or an
error indication. Note that argument definition and the error protocol guarantee a one-to-one relationship
between the elements of namelist and pmidlist; both lists contain exactly numpmid elements.

The python bindings return an array of associated PMIDs corresponding to a tuple of MetricNames.
The returned pmid tuple is passed to pmLookupDescs and pmFetch.

pmNameAll Function

int pmNameAll(pmID pmid, char ***nameset)
Python:
[name1, name2...] = pmNameAll(pmid)

Given a performance metric ID in pmid, pmNameAll determines all the corresponding metric names, if
any, in the PMNS, and returns these through nameset.

The resulting list of pointers nameset and the values (relative names) that the pointers reference are
allocated by pmNameAll with a single call to malloc. It is the caller's responsibility to call free and release
the space when it is no longer required.

In the absence of errors, pmNameAll returns the number of names in nameset.

For many PMNS instances, there is a 1:1 mapping between a name and a PMID, and under these
circumstances, pmNameID provides a simpler interface in the absence of duplicate names for a particular
PMID.

The python bindings return a tuple of all metric names having this identical pmid.

pmNameID Function

int pmNameID(pmID pmid, char **name)
Python:
"metric name" = pmNameID(pmid)

Given a performance metric ID in pmid, pmNameID determines the corresponding metric name, if any,
in the current PMNS, and returns this through name.

In the absence of errors, pmNameID returns zero. The name argument is a null byte terminated string,
allocated by pmNameID using malloc. It is the caller's responsibility to call free and release the space
when it is no longer required.

The python bindings return a metric name corresponding to a pmid.

pmTraversePMNS Function

int pmTraversePMNS(const char *name, void (*dometric)(const char *))
Python:
int status = pmTraversePMNS(name, traverse_callback)

The function pmTraversePMNS may be used to perform a depth-first traversal of the PMNS. The
traversal starts at the node identified by name --if name is an empty string, the traversal starts at the root
of the PMNS. Usually, name would be the pathname of a non-leaf node in the PMNS.

 For each leaf node (actual performance metrics) found in the traversal, the user-supplied function
dometric is called with the full pathname of that metric in the PMNS as the single argument; this
argument is a null byte-terminated string, and is constructed from a buffer that is managed internally to

PMAPI--The
Performance Metrics API

64

pmTraversePMNS. Consequently, the value is valid only during the call to dometric--if the pathname
needs to be retained, it should be copied using strdup before returning from dometric; see the strdup(3)
man page.

The python bindings perform a depth first traversal of the PMNS by scanning namespace, depth first,
and call a python function traverse_callback for each node.

pmUnloadNameSpace Function

int pmUnloadNameSpace(void)
Python:
pmUnLoadNameSpace("NameSpace")

If a local PMNS was loaded with pmLoadNameSpace, calling pmUnloadNameSpace frees up the
memory associated with the PMNS and force all subsequent Name Space functions to use the distributed
PMNS. If pmUnloadNameSpace is called before calling pmLoadNameSpace, it has no effect.

As discussed in the section called “ pmLoadNameSpace Function” there are few if any situations where
clients need to call this routine in modern versions of PCP.

PMAPI Metrics Description Services
The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) metric description services.

pmLookupDesc Function

int pmLookupDesc(pmID pmid, pmDesc *desc)
Python:
pmDesc* pmdesc = pmLookupDesc(c_uint pmid)
(pmDesc* pmdesc)[] = pmLookupDescs(c_uint pmids[N])
(pmDesc* pmdesc)[] = pmLookupDescs(c_uint pmid)

 Given a Performance Metric Identifier (PMID) as pmid, pmLookupDesc returns the associated pmDesc
structure through the parameter desc from the current PMAPI context. For more information about
pmDesc, see the section called “Performance Metric Descriptions”.

The python bindings return the metric description structure pmDesc corresponding to pmid. The returned
pmdesc is passed to pmExtractValue and pmLookupInDom. The python bindings provide an entry
pmLookupDescs that is similar to pmLookupDesc but does a metric description lookup for each element
in a PMID array pmids.

pmLookupInDomText Function

int pmLookupInDomText(pmInDom indom, int level, char **buffer)
Python:
"metric description" = pmGetInDomText(pmDesc pmdesc)

 Provided the source of metrics from the current PMAPI context is a host, retrieve descriptive text about
the performance metrics instance domain identified by indom.

The level argument should be PM_TEXT_ONELINE for a one-line summary, or PM_TEXT_HELP for
a more verbose description suited to a help dialogue. The space pointed to by buffer is allocated in
pmLookupInDomText with malloc, and it is the responsibility of the caller to free unneeded space; see
the malloc(3) and free(3) man pages.

PMAPI--The
Performance Metrics API

65

The help text files used to implement pmLookupInDomText are often created using newhelp and
accessed by the appropriate PMDA response to requests forwarded to the PMDA by PMCD. Further details
may be found in the section called “PMDA Help Text”.

The python bindings lookup the description text about the performance metrics pmDesc pmdesc.
The default is a one line summary; for a more verbose description add an optional second parameter
cpmapi.PM_TEXT_HELP. The constant is available by importing cpmapi.

pmLookupText Function

int pmLookupText(pmID pmid, int level, char **buffer)
Python:
"metric description" = pmLookupText(c_uint pmid)

 Retrieve descriptive text about the performance metric identified by pmid. The argument level should
be PM_TEXT_ONELINE for a one-line summary, or PM_TEXT_HELP for a more verbose description,
suited to a help dialogue.

The space pointed to by buffer is allocated in pmLookupText with malloc, and it is the responsibility
of the caller to free the space when it is no longer required; see the malloc(3) and free(3) man pages.

The help text files used to implement pmLookupText are created using newhelp and accessed by the
appropriate PMDA in response to requests forwarded to the PMDA by PMCD. Further details may be
found in the section called “PMDA Help Text”.

The python bindings lookup the description text about the performance metrics pmID pmid. The
default is a one line summary; for a more verbose description add an optional second parameter
cpmapi.PM_TEXT_HELP. The constant is available by importing cpmapi.

pmLookupLabels Function

int pmLookupLabels(pmID pmid, pmLabelSet **labelsets)
Python:
(pmLabelSet* pmlabelset)[] pmLookupLabels(c_uint pmid)

Retrieve name:value pairs providing additional identity and descriptive metadata about the performance
metric identified by pmid.

The space pointed to by labelsets is allocated in pmLookupLabels with potentially multiple calls
to malloc and it is the responsibility of the caller to pmFreeLabelSets the space when it is no longer
required; see the malloc(3) and pmFreeLabelSets(3) man pages.

Additional helper interfaces are also available, used internally by pmLookupLabels and to help with post-
processing of labelsets. See the pmLookupLabels(3) and pmMergeLabelSets(3) man pages.

PMAPI Instance Domain Services
The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) instance domain services.

pmGetInDom Function

int pmGetInDom(pmInDom indom, int **instlist, char ***namelist)
Python:

PMAPI--The
Performance Metrics API

66

([instance1, instance2...] [name1, name2...]) pmGetInDom(pmDesc pmdesc)

 In the current PMAPI context, locate the description of the instance domain indom, and return through
instlist the internal instance identifiers for all instances, and through namelist the full external
identifiers for all instances. The number of instances found is returned as the function value (or less than
zero to indicate an error).

The resulting lists of instance identifiers (instlist and namelist), and the names that the elements of
namelist point to, are allocated by pmGetInDom with two calls to malloc, and it is the responsibility
of the caller to use free(instlist) and free(namelist) to release the space when it is no longer
required. When the result of pmGetInDom is less than one, both instlist and namelist are
undefined (no space is allocated, and so calling free is a bad idea); see the malloc(3) and free(3) man
pages.

The python bindings return a tuple of the instance identifiers and instance names for an instance domain
pmdesc.

pmLookupInDom Function

int pmLookupInDom(pmInDom indom, const char *name)
Python:
int instid = pmLookupInDom(pmDesc pmdesc, "Instance")

For the instance domain indom, in the current PMAPI context, locate the instance with the external
identification given by name, and return the internal instance identifier.

The python bindings return the instance id corresponding to "Instance" in the instance domain
pmdesc.

pmNameInDom Function

int pmNameInDom(pmInDom indom, int inst, char **name)
Python:
"instance id" = pmNameInDom(pmDesc pmdesc, c_uint instid)

For the instance domain indom, in the current PMAPI context, locate the instance with the internal
instance identifier given by inst, and return the full external identification through name. The space for
the value of name is allocated in pmNameInDom with malloc, and it is the responsibility of the caller to
free the space when it is no longer required; see the malloc(3) and free(3) man pages.

The python bindings return the text name of an instance corresponding to an instance domain pmdesc
with instance identifier instid.

PMAPI Context Services
 Table 3.1, “Context Components of PMAPI Functions ” shows which of the three components of a
PMAPI context (metrics source, instance profile, and collection time) are relevant for various PMAPI
functions. Those PMAPI functions not shown in this table either manipulate the PMAPI context directly,
or are executed independently of the current PMAPI context.

Table 3.1. Context Components of PMAPI Functions

Function Name Metrics Source Instance Profile Collection Time Notes

pmAddProfile Yes Yes

PMAPI--The
Performance Metrics API

67

Function Name Metrics Source Instance Profile Collection Time Notes

pmDelProfile Yes Yes

pmDupContext Yes Yes Yes

pmFetch Yes Yes Yes

pmFetchArchive Yes Yes (1)

pmGetArchiveEnd Yes (1)

pmGetArchiveLabel Yes (1)

pmGetChildren Yes

pmGetChildrenStatus Yes

pmGetContextHostName Yes

pmGetPMNSLocation Yes

pmGetInDom Yes Yes (2)

pmGetInDomArchive Yes (1)

pmLookupDesc Yes (3)

pmLookupInDom Yes Yes (2)

pmLookupInDomArchive Yes (1,2)

pmLookupInDomText Yes

pmLookupLabels Yes

pmLookupName Yes

pmLookupText Yes

pmNameAll Yes

pmNameID Yes

pmNameInDom Yes Yes (2)

pmNameInDomArchive Yes (1,2)

pmSetMode Yes Yes

pmStore Yes (4)

pmTraversePMNS Yes

Notes:

1. Operation supported only for PMAPI contexts where the source of metrics is an archive.

2. A specific instance domain is included in the arguments to these functions, and the result is independent
of the instance profile for any PMAPI context.

3. The metadata that describes a performance metric is sensitive to the source of the metrics, but
independent of any instance profile and of the collection time.

4. This operation is supported only for contexts where the source of the metrics is a host. Further, the
instance identifiers are included in the argument to the function, and the effects upon the current values
of the metrics are immediate (retrospective changes are not allowed). Consequently, from the current
PMAPI context, neither the instance profile nor the collection time influence the result of this function.

pmNewContext Function

int pmNewContext(int type, const char *name)

PMAPI--The
Performance Metrics API

68

 The pmNewContext function may be used to establish a new PMAPI context. The source of metrics
is identified by name, and may be a host specification (type is PM_CONTEXT_HOST) or a comma-
separated list of names referring to a set of archive logs (type is PM_CONTEXT_ARCHIVE). Each
element of the list may either be the base name common to all of the physical files of an archive log or
the name of a directory containing archive logs.

A host specification usually contains a simple hostname, an internet address (IPv4 or IPv6), or the path
to the PMCD Unix domain socket. It can also specify properties of the connection to PMCD, such
as the protocol to use (secure and encrypted, or native) and whether PMCD should be reached via
a pmproxy host. Various other connection attributes, such as authentication information (user name,
password, authentication method, and so on) can also be specified. Further details can be found in the
PCPIntro(3) man page, and the companion Performance Co-Pilot Tutorials and Case Studies document.

In the case where type is PM_CONTEXT_ARCHIVE, there are some restrictions on the archives within
the specified set:

• The archives must all have been generated on the same host.

• The archives must not overlap in time.

• The archives must all have been created using the same time zone.

• The pmID of each metric should be the same in all of the archives. Multiple pmIDs are currently tolerated
by using the first pmID defined for each metric and ignoring subsequent pmIDs.

• The type of each metric must be the same in all of the archives.

• The semantics of each metric must be the same in all of the archives.

• The units of each metric must be the same in all of the archives.

• The instance domain of each metric must be the same in all of the archives.

In the case where type is PM_CONTEXT_LOCAL, name is ignored, and the context uses a stand-alone
connection to the PMDA methods used by PMCD. When this type of context is in effect, the range
of accessible performance metrics is constrained to DSO PMDAs listed in the pmcd configuration file
${PCP_PMCDCONF_PATH}. The reason this is done, as opposed to all of the DSO PMDAs found below
${PCP_PMDAS_DIR} for example, is that DSO PMDAs listed there are very likely to have their metric
names reflected in the local Name Space file, which will be loaded for this class of context.

 The initial instance profile is set up to select all instances in all instance domains, and the initial collection
time is the current time at the time of each request for a host, or the time at the start of the first log for a
set of archives. In the case of archives, the initial collection time results in the earliest set of metrics being
returned from the set of archives at the first pmFetch.

Once established, the association between a PMAPI context and a source of metrics is fixed for the life
of the context; however, functions are provided to independently manipulate both the instance profile and
the collection time components of a context.

The function returns a “handle” that may be used in subsequent calls to pmUseContext. This new
PMAPI context stays in effect for all subsequent context sensitive calls across the PMAPI until another
call to pmNewContext is made, or the context is explicitly changed with a call to pmDupContext or
pmUseContext.

For the python bindings creating and destroying a PMAPI context is done by creating and destroying an
object of the pmapi class.

PMAPI--The
Performance Metrics API

69

pmDestroyContext Function

int pmDestroyContext(int handle)

The PMAPI context identified by handle is destroyed. Typically, this implies terminating a connection
to PMCD or closing an archive file, and orderly clean-up. The PMAPI context must have been previously
created using pmNewContext or pmDupContext.

On success, pmDestroyContext returns zero. If handle was the current PMAPI context, then the current
context becomes undefined. This means the application must explicitly re-establish a valid PMAPI context
with pmUseContext, or create a new context with pmNewContext or pmDupContext, before the next
PMAPI operation requiring a PMAPI context.

For the python bindings creating and destroying a PMAPI context is done by creating and destroying an
object of the pmapi class.

pmDupContext Function

int pmDupContext(void)

Replicate the current PMAPI context (source, instance profile, and collection time). This function returns
a handle for the new context, which may be used with subsequent calls to pmUseContext. The newly
replicated PMAPI context becomes the current context.

pmUseContext Function

int pmUseContext(int handle)

Calling pmUseContext causes the current PMAPI context to be set to the context identified by handle.
The value of handle must be one returned from an earlier call to pmNewContext or pmDupContext.

Below the PMAPI, all contexts used by an application are saved in their most recently modified state, so
pmUseContext restores the context to the state it was in the last time the context was used, not the state
of the context when it was established.

pmWhichContext Function

int pmWhichContext(void)
Python:
int ctx_idx = pmWhichContext()

 Returns the handle for the current PMAPI context (source, instance profile, and collection time).

The python bindings return the handle of the current PMAPI context.

pmAddProfile Function

int pmAddProfile(pmInDom indom, int numinst, int instlist[])
Python:
int status = pmAddProfile(pmDesc pmdesc, [c_uint instid])

 Add new instance specifications to the instance profile of the current PMAPI context. At its simplest,
instances identified by the instlist argument for the indom instance domain are added to the instance
profile. The list of instance identifiers contains numinst values.

PMAPI--The
Performance Metrics API

70

If indom equals PM_INDOM_NULL, or numinst is zero, then all instance domains are selected. If
instlist is NULL, then all instances are selected. To enable all available instances in all domains, use
this syntax:

pmAddProfile(PM_INDOM_NULL, 0, NULL).

The python bindings add the list of instances instid to the instance profile of the instance pmdesc.

pmDelProfile Function

int pmDelProfile(pmInDom indom, int numinst, int instlist[])
Python:
int status = pmDelProfile(pmDesc pmdesc, c_uint instid)
int status = pmDelProfile(pmDesc pmdesc, [c_uint instid])

 Delete instance specifications from the instance profile of the current PMAPI context. In the simplest
variant, the list of instances identified by the instlist argument for the indom instance domain is
removed from the instance profile. The list of instance identifiers contains numinst values.

If indom equals PM_INDOM_NULL, then all instance domains are selected for deletion. If instlist
is NULL, then all instances in the selected domains are removed from the profile. To disable all available
instances in all domains, use this syntax:

pmDelProfile(PM_INDOM_NULL, 0, NULL)

The python bindings delete the list of instances instid from the instance profile of the instance domain
pmdesc.

pmSetMode Function

int pmSetMode(int mode, const struct timeval *when, int delta)
Python:
int status = pmSetMode(mode, timeVal timeval, int delta)

 This function defines the collection time and mode for accessing performance metrics and metadata
in the current PMAPI context. This mode affects the semantics of subsequent calls to the following
PMAPI functions: pmFetch, pmFetchArchive, pmLookupDesc, pmGetInDom, pmLookupInDom ,
and pmNameInDom.

The pmSetMode function requires the current PMAPI context to be of type PM_CONTEXT_ARCHIVE.

The when parameter defines a time origin, and all requests for metadata (metrics descriptions and instance
identifiers from the instance domains) are processed to reflect the state of the metadata as of the time
origin. For example, use the last state of this information at, or before, the time origin.

If the mode is PM_MODE_INTERP then, in the case of pmFetch, the underlying code uses an interpolation
scheme to compute the values of the metrics from the values recorded for times in the proximity of the
time origin.

If the mode is PM_MODE_FORW, then, in the case of pmFetch, the collection of recorded metric values
is scanned forward, until values for at least one of the requested metrics is located after the time origin.
Then all requested metrics stored in the PCP archive at that time are returned with a corresponding time
stamp. This is the default mode when an archive context is first established with pmNewContext.

If the mode is PM_MODE_BACK, then the situation is the same as for PM_MODE_FORW, except a pmFetch
is serviced by scanning the collection of recorded metrics backward for metrics before the time origin.

PMAPI--The
Performance Metrics API

71

After each successful pmFetch, the time origin is reset to the time stamp returned through the pmResult.

The pmSetMode parameter delta defines an additional number of time unit that should be used to adjust
the time origin (forward or backward) after the new time origin from the pmResult has been determined.
This is useful when moving through archives with a mode of PM_MODE_INTERP. The high-order bits of
the mode parameter field is also used to optionally set the units of time for the delta field. To specify the
units of time, use the PM_XTB_SET macro with one of the values PM_TIME_NSEC, PM_TIME_MSEC,
PM_TIME_SEC, or so on as follows:

PM_MODE_INTERP | PM_XTB_SET(PM_TIME_XXXX)

If no units are specified, the default is to interpret delta as milliseconds.

Using these mode options, an application can implement replay, playback, fast forward, or reverse for
performance metric values held in a set of PCP archive logs by alternating calls to pmSetMode and
pmFetch.

In Example 3.13, “Dumping Values in Temporal Sequence”, the code fragment may be used to
dump only those values stored in correct temporal sequence, for the specified performance metric
my.metric.name:

Example 3.13. Dumping Values in Temporal Sequence

 int sts;
 pmID pmid;
 char *name = “my.metric.name”;

 sts = pmNewContext(PM_CONTEXT_ARCHIVE, “myarchive”);
 sts = pmLookupName(1, &name, &pmid);
 for (; ;) {
 sts = pmFetch(1, &pmid, &result);
 if (sts < 0)
 break;
 /* dump value(s) from result->vset[0]->vlist[] */
 pmFreeResult(result);
 }

Alternatively, the code fragment in Example 3.14, “Replaying Interpolated Metrics” may be used to replay
interpolated metrics from an archive in reverse chronological order, at ten-second intervals (of recorded
time):

Example 3.14. Replaying Interpolated Metrics

 int sts;
 pmID pmid;
 char *name = “my.metric.name”;
 struct timeval endtime;

 sts = pmNewContext(PM_CONTEXT_ARCHIVE, “myarchive”);
 sts = pmLookupName(1, &name, &pmid);
 sts = pmGetArchiveEnd(&endtime);
 sts = pmSetMode(PM_MODE_INTERP, &endtime, -10000);
 while (pmFetch(1, &pmid, &result) != PM_ERR_EOL) {
 /*

PMAPI--The
Performance Metrics API

72

 * process interpolated metric values as of result->timestamp
 */
 pmFreeResult(result);
 }

The python bindings define the collection time and mode for reading archive files. mode can be one of:
c_api.PM_MODE_LIVE, c_api.PM_MODE_INTERP, c_api.FORW, c_api.BACK. wjocj are available
by importing cpmapi.

pmReconnectContext Function

int pmReconnectContext(int handle)
Python:
int status = pmReconnectContext()

 As a result of network, host, or PMCD (Performance Metrics Collection Daemon) failure, an application's
connection to PMCD may be established and then lost.

The function pmReconnectContext allows an application to request that the PMAPI context identified
by handle be re-established, provided the associated PMCD is accessible.

Note

handle may or may not be the current context.

To avoid flooding the system with reconnect requests, pmReconnectContext attempts a reconnection
only after a suitable delay from the previous attempt. This imposed restriction on the reconnect re-
try time interval uses a default exponential back-off so that the initial delay is 5 seconds after the
first unsuccessful attempt, then 10 seconds, then 20 seconds, then 40 seconds, and then 80 seconds
thereafter. The intervals between reconnection attempts may be modified using the environment variable
PMCD_RECONNECT_TIMEOUT and the time to wait before an attempted connection is deemed to have
failed is controlled by the PMCD_CONNECT_TIMEOUT environment variable; see the PCPIntro(1) man
page.

If the reconnection succeeds, pmReconnectContext returns handle. Note that even in the case of a
successful reconnection, pmReconnectContext does not change the current PMAPI context.

The python bindings reestablish the connection for the context.

pmGetContextHostName Function

const char *pmGetContextHostName(int id)
char *pmGetContextHostName_r(int id, char *buf, int buflen)
Python:
"hostname" = pmGetContextHostName()

Given a valid PCP context identifier previously created with pmNewContext or pmDupContext, the
pmGetContextHostName function provides a possibility to retrieve a host name associated with a context
regardless of the context type.

This function will use the pmcd.hostname metric if it is available, and so is able to provide an accurate
hostname in the presence of connection tunnelling and port forwarding.

If id is not a valid PCP context identifier, this function returns a zero length string and therefore never fails.

PMAPI--The
Performance Metrics API

73

In the case of pmGetContextHostName, the string value is held in a single static buffer, so concurrent
calls may not produce the desired results. The pmGetContextHostName_r function allows a buffer and
length to be passed in, into which the message is stored; this variant uses no shared storage and can be
used in a thread-safe manner.

The python bindings query the current context hostname.

PMAPI Timezone Services
The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) timezone services.

pmNewContextZone Function

int pmNewContextZone(void)
Python:
pmNewContextZone()

 If the current PMAPI context is an archive, the pmNewContextZone function uses the timezone from
the archive label record in the first archive of the set to set the current reporting timezone. The current
reporting timezone affects the timezone used by pmCtime and pmLocaltime.

If the current PMAPI context corresponds to a host source of metrics, pmNewContextZone executes a
pmFetch to retrieve the value for the metric pmcd.timezone and uses that to set the current reporting
timezone.

In both cases, the function returns a value to identify the current reporting timezone that may be used in
a subsequent call to pmUseZone to restore this reporting timezone.

PM_ERR_NOCONTEXT indicates the current PMAPI context is not valid. A return value less than zero
indicates a fatal error from a system call, most likely malloc.

pmNewZone Function

int pmNewZone(const char *tz)
Python:
int tz_handle = pmNewZone(int tz)

The pmNewZone function sets the current reporting timezone, and returns a value that may be used in a
subsequent call to pmUseZone to restore this reporting timezone. The current reporting timezone affects
the timezone used by pmCtime and pmLocaltime.

The tz argument defines a timezone string, in the format described for the TZ environment variable. See
the environ(7) man page.

A return value less than zero indicates a fatal error from a system call, most likely malloc.

The python bindings create a new zone handle and set reporting timezone for the timezone defined by tz.

pmUseZone Function

int pmUseZone(const int tz_handle)
Python:
int status = pmUseZone(int tz_handle)

PMAPI--The
Performance Metrics API

74

In the pmUseZone function, tz_handle identifies a reporting timezone as previously established by
a call to pmNewZone or pmNewContextZone, and this becomes the current reporting timezone. The
current reporting timezone effects the timezone used by pmCtime and pmLocaltime).

A return value less than zero indicates the value of tz_handle is not legal.

The python bindings set the current reporting timezone defined by timezone tz_handle.

pmWhichZone Function

int pmWhichZone(char **tz)
Python:
"zone string" = pmWhichZone()

The pmWhichZone function returns the handle of the current timezone, as previously established by a call
to pmNewZone or pmNewContextZone. If the call is successful (that is, there exists a current reporting
timezone), a non-negative integer is returned and tz is set to point to a static buffer containing the timezone
string itself. The current reporting timezone effects the timezone used by pmCtime and pmLocaltime.

A return value less than zero indicates there is no current reporting timezone.

The python bindings return the current reporting timezone.

PMAPI Metrics Services
The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) metrics services.

pmFetch Function

int pmFetch(int numpmid, pmID pmidlist[], pmResult **result)
Python:
pmResult* pmresult = pmFetch(c_uint pmid[])

 The most common PMAPI operation is likely to be calls to pmFetch, specifying a list of PMIDs (for
example, as constructed by pmLookupName) through pmidlist and numpmid. The call to pmFetch is
executed in the context of a source of metrics, instance profile, and collection time, previously established
by calls to the functions described in the section called “PMAPI Context Services”.

The principal result from pmFetch is returned as a tree structured result, described in the the section
called “Performance Metrics Values”.

If one value (for example, associated with a particular instance) for a requested metric is unavailable at the
requested time, then there is no associated pmValue structure in the result. If there are no available values
for a metric, then numval is zero and the associated pmValue[] instance is empty; valfmt is undefined
in these circumstances, but pmid is correctly set to the PMID of the metric with no values.

If the source of the performance metrics is able to provide a reason why no values are available for a
particular metric, this reason is encoded as a standard error code in the corresponding numval; see the
pmerr(1) and pmErrStr(3) man pages. Since all error codes are negative, values for a requested metric
are unavailable if numval is less than or equal to zero.

The argument definition and the result specifications have been constructed to ensure that for each PMID
in the requested pmidlist there is exactly one pmValueSet in the result, and that the PMIDs appear in
exactly the same sequence in both pmidlist and result. This makes the number and order of entries

PMAPI--The
Performance Metrics API

75

in result completely deterministic, and greatly simplifies the application programming logic after the
call to pmFetch.

The result structure returned by pmFetch is dynamically allocated using one or more calls to malloc and
specialized allocation strategies, and should be released when no longer required by calling pmFreeResult.
Under no circumstances should free be called directly to release this space.

As common error conditions are encoded in the result data structure, only serious events (such as loss of
connection to PMCD, malloc failure, and so on) would cause an error value to be returned by pmFetch.
Otherwise, the value returned by the pmFetch function is zero.

In Example 3.15, “PMAPI Metrics Services”, the code fragment dumps the values (assumed to be stored
in the lval element of the pmValue structure) of selected performance metrics once every 10 seconds:

Example 3.15. PMAPI Metrics Services

 int i, j, sts;
 pmID pmidlist[10];
 pmResult *result;
 time_t now;

 /* set up PMAPI context, numpmid and pmidlist[] ... */
 while ((sts = pmFetch(10, pmidlist, &result)) >= 0) {
 now = (time_t)result->timestamp.tv_sec;
 printf("\n@ %s", ctime(&now));
 for (i = 0; i < result->numpmid; i++) {
 printf("PMID: %s", pmIDStr(result->vset[i]->pmid));
 for (j = 0; j < result->vset[i]->numval; j++) {
 printf(" 0x%x", result->vset[i]->vlist[j].value.lval);
 putchar('\n');
 }
 }
 pmFreeResult(result);
 sleep(10);
 }

Note

 If a response is not received back from PMCD within 10 seconds, the pmFetch times out and
returns PM_ERR_TIMEOUT. This is most likely to occur when the PMAPI client and PMCD are
communicating over a slow network connection, but may also occur when one of the hosts is
extremely busy. The time out period may be modified using the PMCD_REQUEST_TIMEOUT
environment variable; see the PCPIntro(1) man page.

The python bindings fetch a pmResult corresponding to a pmid list, which is returned from
pmLookupName. The returned pmresult is passed to pmExtractValue.

pmFreeResult Function

void pmFreeResult(pmResult *result)
Python:
pmFreeResult(pmResult* pmresult)

 Release the storage previously allocated for a result by pmFetch.

PMAPI--The
Performance Metrics API

76

THe python bindings free a pmresult previously allocated by pmFetch.

pmStore Function

int pmStore(const pmResult *request)
Python:
pmResult* pmresult = pmStore(pmResult* pmresult)

In some special cases it may be helpful to modify the current values of performance metrics in one or
more underlying domains, for example to reset a counter to zero, or to modify a metric, which is a control
variable within a Performance Metric Domain.

The pmStore function is a lightweight inverse of pmFetch. The caller must build the pmResult data
structure (which could have been returned from an earlier pmFetch call) and then call pmStore. It is an
error to pass a request to pmStore in which the numval field within any of the pmValueSet structure
has a value less than one.

The current PMAPI context must be one with a host as the source of metrics, and the current value of the
nominated metrics is changed. For example, pmStore cannot be used to make retrospective changes to
information in a PCP archive log.

PMAPI Fetchgroup Services
The fetchgroup functions implement a registration-based mechanism to fetch groups of performance
metrics, including automation for general unit, rate, type conversions and convenient instance and
value encodings. They constitute a powerful and compact alternative to the classic Performance Metrics
Application Programming Interface (PMAPI) sequence of separate lookup, check, fetch, iterate, extract,
and convert functions.

A fetchgroup consists of a PMAPI context and a list of metrics that the application is interested in fetching.
For each metric of interest, a conversion specification and a destination pmAtomValue pointer is given.
Then, at each subsequent fetchgroup-fetch operation, all metrics are fetched, decoded/converted, and
deposited in the desired field of the destination pmAtomValues. See Example 3.18, “ pmAtomValue
Structure” for more on that data type. Similarly, a per-metric-instance status value is optionally available
for detailed diagnostics reflecting fetch/conversion.

The pmfetchgroup(3) man pages give detailed information on the C API; we only list some common
cases here. The simplified Python binding to the same API is summarized below. One difference is that
runtime errors in C are represented by status integers, but in Python are mapped to pmErr exceptions.
Another is that supplying metric type codes are mandatory in the C API but optional in Python, since the
latter language supports dynamic typing. Another difference is Python's wrapping of output metric values
in callable "holder" objects. We demonstrate all of these below.

Fetchgroup setup

To create a fetchgroup and its private PMAPI context, the pmCreateFetchGroup function is used, with
parameters similar to pmNewContext (see the section called “ pmNewContext Function”).

int sts;
pmFG fg;
sts = pmCreateFetchGroup(& fg, PM_CONTEXT_ARCHIVE, "./foo.meta");
assert(sts == 0);
Python
fg = pmapi.fetchgroup(c_api.PM_CONTEXT_ARCHIVE, './foo.meta')

PMAPI--The
Performance Metrics API

77

If special PMAPI query, PMNS enumeration, or configuration upon the context is needed, the private
context may be carefully accessed.

int ctx = pmGetFetchGroupContext(fg);
sts = pmUseContext(ctx);
assert(sts == 0);
sts = pmSetMode(...);
Python
ctx = fg.get_context()
ctx.pmSetMode(...)

A fetchgroup is born empty. It needs to be extended with metrics to read. Scalars are easy. We specify the
metric name, an instance-domain instance if necessary, a unit-scaling and/or rate-conversion directive if
desired, and a type code (see Example 3.2, “ pmDesc Structure”). In C, the value destination is specified
by pointer. In Python, a value-holder is returned.

static pmAtomValue ncpu, loadavg, idle;
sts = pmExtendFetchGroup_item(fg, "hinv.ncpu", NULL, NULL,
 & ncpu, PM_TYPE_32, NULL);
assert (sts == 0);
sts = pmExtendFetchGroup_item(fg, "kernel.all.load", "5 minute", NULL,
 & loadavg, PM_TYPE_DOUBLE, NULL);
assert (sts == 0);
sts = pmExtendFetchGroup_item(fg, "kernel.all.cpu.idle", NULL, "s/100s",
 & idle, PM_TYPE_STRING, NULL);
assert (sts == 0);
Python
ncpu = fg.extend_item('hinv.cpu')
loadavg = fg.extend_item('kernel.all.load', instance='5 minute')
idle = fg.extend_item('kernel.all.cpu.idle, scale='s/100s')

Registering metrics with whole instance domains are also possible; these result in a vector of
pmAtomValue instances, instance names and codes, and status codes, so the fetchgroup functions take
more optional parameters. In Python, a value-holder-iterator object is returned.

enum { max_disks = 100 };
static unsigned num_disks;
static pmAtomValue disk_reads[max_disks];
static int disk_read_stss[max_disks];
static char *disk_names[max_disks];
sts = pmExtendFetchGroup_indom(fg, "disk.dm.read", NULL,
 NULL, disk_names, disk_reads, PM_TYPE_32,
 disk_read_stss, max_disks, & num_disks,
 NULL);
Python
values = fg.extend_indom('disk.dm.read')

Registering interest in the future fetch-operation timestamp is also possible. In python, a datetime-holder
object is returned.

struct timeval tv;

PMAPI--The
Performance Metrics API

78

sts = pmExtendFetchGroup_timestamp(fg, & tv);
Python
tv = fg.extend_timestamp()

Fetchgroup operation

Now it's time for the program to process the metrics. In the C API, each metric value is put into status
integers (if requested), and one field of the pmAtomValue union - whichever was requested with the
PM_TYPE_* code. In the Python API, each metric value is accessed by calling the value-holder objects.

sts = pmFetchGroup(fg);
assert (sts == 0);
printf("%s", ctime(& tv.tv_sec));
printf("#cpus: %d, loadavg: %g, idle: %s\n", ncpu.l, loadavg.d, idle.cp);
for (i=0; i<num_disks; i++)
 if (disk_read_stss[i] == 0)
 printf("disk %s reads %d\n", disk_names[i], disk_reads[i].l);
Python
fg.fetch()
print(tv())
print("#cpus: %d, loadavg: %g, idle: %d\n" % (ncpu(), loadavg(), idle()))
for icode, iname, value in values():
 print('disk %s reads %d' % (iname, value()))

The program may fetch and process the values only once, or in a loop. The program need not - must not -
modify or free any of the output values/pointers supplied by the fetchgroup functions.

Fetchgroup shutdown

Should the program wish to shut down a fetchgroup explicitly, thereby closing the private PMAPI context,
there is a function for that.

sts = pmDestroyFetchGroup(fg);
Python
del fg # or nothing

PMAPI Record-Mode Services
The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) record-mode services. These services allow a monitor tool to establish connections to pmlogger
co-processes, which they create and control for the purposes of recording live performance data from
(possibly) multiple hosts. Since pmlogger records for one host only, these services can administer a group
of loggers, and set up archive folios to track the logs. Tools like pmafm can subsequently use those folios
to replay recorded data with the initiating tool. pmchart uses these concepts when providing its Record
mode functionality.

pmRecordAddHost Function

int pmRecordAddHost(const char *host, int isdefault, pmRecordHost **rhp)
Python:
(int status, pmRecordHost* rhp) = pmRecordAddHost("host string", 1, "configure string")

PMAPI--The
Performance Metrics API

79

 The pmRecordAddHost function adds hosts once pmRecordSetup has established a new recording
session. The pmRecordAddHost function along with the pmRecordSetup and pmRecordControl
functions are used to create a PCP archive.

pmRecordAddHost is called for each host that is to be included in the recording session. A new
pmRecordHost structure is returned via rhp. It is assumed that PMCD is running on the host as this is
how pmlogger retrieves the required performance metrics.

If this host is the default host for the recording session, isdefault is nonzero. This ensures that the
corresponding archive appears first in the PCP archive folio. Hence the tools used to replay the archive
folio make the correct determination of the archive associated with the default host. At most one host
per recording session may be nominated as the default host.

The calling application writes the desired pmlogger configuration onto the stdio stream returned via the
f_config field in the pmRecordHost structure.

pmRecordAddHost returns 0 on success and a value less than 0 suitable for decoding with pmErrStr on
failure. The value EINVAL has the same interpretation as errno being set to EINVAL.

pmRecordControl Function

int pmRecordControl(pmRecordHost *rhp, int request, const char *options)
Python:
int status = pmRecordControl("host string", 1, "configure string")

Arguments may be optionally added to the command line that is used to launch pmlogger by calling the
pmRecordControl function with a request of PM_REC_SETARG. The pmRecordControl along with the
pmRecordSetup and pmRecordAddHost functions are used to create a PCP archive.

The argument is passed via options and one call to pmRecordControl is required for each distinct
argument. An argument may be added for a particular pmlogger instance identified by rhp. If the rhp
argument is NULL, the argument is added for all pmlogger instances that are launched in the current
recording session.

Independent of any calls to pmRecordControl with a request of PM_REC_SETARG, each pmlogger
instance is automatically launched with the following arguments: -c, -h, -l, -x, and the basename for
the PCP archive log.

To commence the recording session, call pmRecordControl with a request of PM_REC_ON, and rhp
must be NULL. This launches one pmlogger process for each host in the recording session and initializes
the fd_ipc, logfile, pid, and status fields in the associated pmRecordHost structure(s).

To terminate a pmlogger instance identified by rhp, call pmRecordControl with a request of
PM_REC_OFF. If the rhp argument to pmRecordControl is NULL, the termination request is broadcast
to all pmlogger processes in the current recording session. An informative dialogue is generated directly
by each pmlogger process.

To display the current status of the pmlogger instance identified by rhp, call pmRecordControl with
a request of PM_REC_STATUS. If the rhp argument to pmRecordControl is NULL, the status request
is broadcast to all pmlogger processes in the current recording session. The display is generated directly
by each pmlogger process.

To detach a pmlogger instance identified by rhp, allow it to continue independent of the application that
launched the recording session and call pmRecordControl with a request of PM_REC_DETACH. If the
rhp argument to pmRecordControl is NULL, the detach request is broadcast to all pmlogger processes
in the current recording session.

PMAPI--The
Performance Metrics API

80

pmRecordControl returns 0 on success and a value less than 0 suitable for decoding with pmErrStr on
failure. The value EINVAL has the same interpretation as errno being set to EINVAL.

pmRecordControl returns PM_ERR_IPC if the associated pmlogger process has already exited.

pmRecordSetup Function

FILE *pmRecordSetup(const char *folio, const char *creator, int replay)
Python:
int status = pmRecordSetup("folio string", "creator string", int replay)

The pmRecordSetup function along with the pmRecordAddHost and pmRecordControl functions may
be used to create a PCP archive on the fly to support record-mode services for PMAPI client applications.

Each record mode session involves one or more PCP archive logs; each is created using a dedicated
pmlogger process, with an overall Archive Folio format as understood by the pmafm command, to name
and collect all of the archive logs associated with a single recording session.

The pmRecordHost structure is used to maintain state information between the creator of the
recording session and the associated pmlogger process(es). The structure, shown in Example 3.16, “
pmRecordHost Structure”, is defined as:

Example 3.16. pmRecordHost Structure

typedef struct {
 FILE *f_config; /* caller writes pmlogger configuration here */
 int fd_ipc; /* IPC channel to pmlogger */
 char *logfile; /* full pathname for pmlogger error logfile */
 pid_t pid; /* process id for pmlogger */
 int status; /* exit status, -1 if unknown */
} pmRecordHost;

In Procedure 3.1, “Creating a Recording Session”, the functions are used in combination to create a
recording session.

Procedure 3.1. Creating a Recording Session

1. Call pmRecordSetup to establish a new recording session. A new Archive Folio is created using the
name folio. If the folio file or directory already exists, or if it cannot be created, this is an error.
The application that is creating the session is identified by creator (most often this would be the same
as the global PMAPI application name, as returned pmGetProgname()). If the application knows
how to create its own configuration file to replay the recorded session, replay should be nonzero. The
pmRecordSetup function returns a stdio stream onto which the application writes the text of any
required replay configuration file.

2. For each host that is to be included in the recording session, call pmRecordAddHost. A new
pmRecordHost structure is returned via rhp. It is assumed that PMCD is running on the host
as this is how pmlogger retrieves the required performance metrics. See the section called “
pmRecordAddHost Function” for more information.

3. Optionally, add arguments to the command line that is used to launch pmlogger by calling
pmRecordControl with a request of PM_REC_SETARG. The argument is passed via options and
one call to pmRecordControl is required for each distinct argument. See the section called “
pmRecordControl Function” for more information.

PMAPI--The
Performance Metrics API

81

4. To commence the recording session, call pmRecordControl with a request of PM_REC_ON, and
rhp must be NULL.

5. To terminate a pmlogger instance identified by rhp, call pmRecordControl with a request of
PM_REC_OFF.

6. To display the current status of the pmlogger instance identified by rhp, call pmRecordControl
with a request of PM_REC_STATUS.

7. To detach a pmlogger instance identified by rhp, allow it to continue independent of the application
that launched the recording session, call pmRecordControl with a request of PM_REC_DETACH.

The calling application should not close any of the returned stdio streams; pmRecordControl performs
this task when recording is commenced.

Once pmlogger has been started for a recording session, pmlogger assumes responsibility for any dialogue
with the user in the event that the application that launched the recording session should exit, particularly
without terminating the recording session.

By default, information and dialogues from pmlogger is displayed using pmconfirm. This default is based
on the assumption that most applications launching a recording session are GUI-based. In the event that
pmconfirm fails to display the information (for example, because the DISPLAY environment variable
is not set), pmlogger writes on its own stderr stream (not the stderr stream of the launching process).
The output is assigned to the xxxxxx.host.log file. For convenience, the full pathname to this file is
provided via the logfile field in the pmRecordHost structure.

If the options argument to pmRecordControl is not NULL, this string may be used to pass additional
arguments to pmconfirm in those cases where a dialogue is to be displayed. One use of this capability is
to provide a -geometry string to control the placement of the dialogue.

Premature termination of a launched pmlogger process may be determined using the pmRecordHost
structure, by calling select on the fd_ipc field or polling the status field that will contain the
termination status from waitpid if known, or -1.

These functions create a number of files in the same directory as the folio file named in the call to
pmRecordSetup. In all cases, the xxxxxx component is the result of calling mkstemp.

• If replay is nonzero, xxxxxx is the creator's replay configuration file, else an empty control file, used
to guarantee uniqueness.

• The folio file is the PCP Archive Folio, suitable for use with the pmafm command.

• The xxxxxx.host.config file is the pmlogger configuration for each host. If the same host is used
in different calls to pmRecordAddHost within the same recording session, one of the letters 'a' through
'z' is appended to the xxxxxx part of all associated file names to ensure uniqueness.

• xxxxxx.host.log is stdout and stderr for the pmlogger instance for each host.

• The xxxxxx.host.{0,meta,index} files comprise a single PCP archive for each host.

pmRecordSetup may return NULL in the event of an error. Check errno for the real cause. The value
EINVAL typically means that the order of calls to these functions is not correct; that is, there is an obvious
state associated with the current recording session that is maintained across calls to the functions.

For example, calling pmRecordControl before calling pmRecordAddHost at least once, or calling
pmRecordAddHost before calling pmRecordSetup would produce an EINVAL error.

PMAPI--The
Performance Metrics API

82

PMAPI Archive-Specific Services
The functions described in this section provide archive-specific services.

pmGetArchiveLabel Function

int pmGetArchiveLabel(pmLogLabel *lp)
Python:
pmLogLabel loglabel = pmGetArchiveLabel()

 Provided the current PMAPI context is associated with a set of PCP archive logs, the
pmGetArchiveLabel function may be used to fetch the label record from the first archive in the set of
archives. The structure returned through lp is as shown in Example 3.17, “ pmLogLabel Structure”:

Example 3.17. pmLogLabel Structure

/*
 * Label Record at the start of every log file - as exported above the PMAPI ...
 */
#define PM_TZ_MAXLEN 40
#define PM_LOG_MAXHOSTLEN 64
#define PM_LOG_MAGIC 0x50052600
#define PM_LOG_VERS01 0x1
#define PM_LOG_VERS02 0x2
#define PM_LOG_VOL_TI -2 /* temporal index */
#define PM_LOG_VOL_META -1 /* meta data */
typedef struct {
 int ll_magic; /* PM_LOG_MAGIC | log format version no. */
 pid_t ll_pid; /* PID of logger */
 struct timeval ll_start; /* start of this log */
 char ll_hostname[PM_LOG_MAXHOSTLEN]; /* name of collection host */
 char ll_tz[PM_TZ_MAXLEN]; /* $TZ at collection host */
} pmLogLabel;

The python bindings get the label record from the archive.

pmGetArchiveEnd Function

int pmGetArchiveEnd(struct timeval *tvp)
Python:
timeval tv = status = pmGetArchiveEnd()

 Provided the current PMAPI context is associated with a set of PCP archive logs, pmGetArchiveEnd
finds the logical end of the last archive file in the set (after the last complete record in the archive), and
returns the last recorded time stamp with tvp. This timestamp may be passed to pmSetMode to reliably
position the context at the last valid log record, for example, in preparation for subsequent reading in
reverse chronological order.

For archive logs that are not concurrently being written, the physical end of file and the logical end of
file are co-incident. However, if an archive log is being written by pmlogger at the same time that an
application is trying to read the archive, the logical end of file may be before the physical end of file due
to write buffering that is not aligned with the logical record boundaries.

The python bindings get the last recorded timestamp from the archive.

PMAPI--The
Performance Metrics API

83

pmGetInDomArchive Function

int pmGetInDomArchive(pmInDom indom, int **instlist, char ***namelist)
Python:
((instance1, instance2...) (name1, name2...)) pmGetInDom(pmDesc pmdesc)

 Provided the current PMAPI context is associated with a set of PCP archive logs, pmGetInDomArchive
scans the metadata to generate the union of all instances for the instance domain indom that can be found
in the set of archive logs, and returns through instlist the internal instance identifiers, and through
namelist the full external identifiers.

This function is a specialized version of the more general PMAPI function pmGetInDom.

The function returns the number of instances found (a value less than zero indicates an error).

The resulting lists of instance identifiers (instlist and namelist), and the names that the elements
of namelist point to, are allocated by pmGetInDomArchive with two calls to malloc, and it is the
responsibility of the caller to use free(instlist) and free(namelist) to release the space when it
is no longer required; see the malloc(3) and free(3) man pages.

When the result of pmGetInDomArchive is less than one, both instlist and namelist are undefined
(no space is allocated; so calling free is a singularly bad idea).

The python bindings return a tuple of the instance IDs and names for the union of all instances for the
instance domain pmdesc that can be found in the archive log.

pmLookupInDomArchive Function

int pmLookupInDomArchive(pmInDom indom, const char *name)
Python:
c_uint instid = pmLookupInDomArchive(pmDesc pmdesc, "Instance")

Provided the current PMAPI context is associated with a set of PCP archive logs,
pmLookupInDomArchive scans the metadata for the instance domain indom, locates the first instance
with the external identification given by name, and returns the internal instance identifier.

This function is a specialized version of the more general PMAPI function pmLookupInDom.

The pmLookupInDomArchive function returns a positive instance identifier on success.

The python bindings return the instance id in pmdesc corresponding to Instance.

pmNameInDomArchive Function

int pmNameInDomArchive(pmInDom indom, int inst, char **name)
Python:
"instance id" = pmNameInDomArchive(pmDesc pmdesc, c_uint instid)

Provided the current PMAPI context is associated with a set of PCP archive logs, pmNameInDomArchive
scans the metadata for the instance domain indom, locates the first instance with the internal instance
identifier given by inst, and returns the full external instance identification through name. This function
is a specialized version of the more general PMAPI function pmNameInDom.

The space for the value of name is allocated in pmNameInDomArchive with malloc, and it is the
responsibility of the caller to free the space when it is no longer required; see the malloc(3) andfree(3)
man pages.

PMAPI--The
Performance Metrics API

84

The python bindings return the text name of an instance corresponding to an instance domain pmdesc
with instance identifier instid.

pmFetchArchive Function

int pmFetchArchive(pmResult **result)
Python:
pmResult* pmresult = pmFetchArchive()

 This is a variant of pmFetch that may be used only when the current PMAPI context is associated with
a set of PCP archive logs. The result is instantiated with all of the metrics (and instances) from the
next archive record; consequently, there is no notion of a list of desired metrics, and the instance profile
is ignored.

It is expected that pmFetchArchive would be used to create utilities that scan archive logs (for example,
pmdumplog and pmlogsummary), and the more common access to the archives would be through the
pmFetch interface.

PMAPI Time Control Services
 The PMAPI provides a common framework for client applications to control time and to synchronize time
with other applications. The user interface component of this service is fully described in the companion
Performance Co-Pilot User's and Administrator's Guide. See also the pmtime(1) man page.

This service is most useful when processing sets of PCP archive logs, to control parameters such as the
current archive position, update interval, replay rate, and timezone, but it can also be used in live mode
to control a subset of these parameters. Applications such as pmchart, pmgadgets, pmstat, and pmval
use the time control services to connect to an instance of the time control server process, pmtime, which
provides a uniform graphical user interface to the time control services.

A full description of the PMAPI time control functions along with code examples can be found in man
pages as listed in Table 3.2, “Time Control Functions in PMAPI”:

Table 3.2. Time Control Functions in PMAPI

Man Page Synopsis of Time Control Function

pmCtime(3) Formats the date and time for a reporting timezone.

pmLocaltime(3) Converts the date and time for a reporting timezone.

pmParseTimeWindow(3) Parses time window command line arguments.

pmTimeConnect(3) Connects to a time control server via a command socket.

pmTimeDisconnect(3) Closes the command socket to the time control server.

pmTimeGetPort(3) Obtains the port name of the current time control server.

pmTimeRecv(3) Blocks until the time control server sends a command message.

pmTimeSendAck(3) Acknowledges completion of the step command.

pmTimeSendBounds(3) Specifies beginning and end of archive time period.

pmTimeSendMode(3) Requests time control server to change to a new VCR mode.

pmTimeSendPosition(3) Requests time control server to change position or update intervals.

pmTimeSendTimezone(3) Requests time control server to change timezones.

pmTimeShowDialog(3) Changes the visibility of the time control dialogue.

pmTimeGetStatePixmap(3) Returns array of pixmaps representing supplied time control state.

PMAPI--The
Performance Metrics API

85

PMAPI Ancillary Support Services
 The functions described in this section provide services that are complementary to, but not necessarily a
part of, the distributed manipulation of performance metrics delivered by the PCP components.

pmGetConfig Function

char *pmGetConfig(const char *variable)
Python:
"env variable value = pmGetConfig("env variable")

The pmGetConfig function searches for a variable first in the environment and then, if one is not found,
in the PCP configuration file and returns the string result. If a variable is not already in the environment,
it is added with a call to the setenv function before returning.

The default location of the PCP configuration file is /etc/pcp.conf, but this location may be changed
by setting PCP_CONF in the environment to a new location, as described in the pcp.conf(5) man page.

If the variable is not found in either the environment or the PCP configuration file (or the PCP configuration
file is not found and PCP_CONF is not set in the environment), then a fatal error message is printed and
the process will exit. Although this sounds drastic, it is the only course of action available because the
PCP configuration or installation is fatally flawed.

If this function returns, the returned value points to a string in the environment; and so although the function
returns the same type as the getenv function (which should probably be a const char *), changing
the content of the string is not recommended.

The python bindings return a value for environment variable "env variable" from environment or
pcp config file.

pmErrStr Function

const char *pmErrStr(int code)
char *pmErrStr_r(int code, char *buf, int buflen);
Python:
"error string text" = pmErrStr(int error_code)

This function translates an error code into a text string, suitable for generating a diagnostic message. By
convention within PCP, all error codes are negative. The small values are assumed to be negated versions
of the platform error codes as defined in errno.h, and the strings returned are according to strerror.
The large, negative error codes are PMAPI error conditions, and pmErrStr returns an appropriate PMAPI
error string, as determined by code.

In the case of pmErrStr, the string value is held in a single static buffer, so concurrent calls may not
produce the desired results. The pmErrStr_r function allows a buffer and length to be passed in, into
which the message is stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindings return the error string corresponding to the error code.

pmExtractValue Function

int pmExtractValue(int valfmt, const pmValue *ival, int itype,
pmAtomValue *oval, int otype)
Python:

PMAPI--The
Performance Metrics API

86

pmAtomValue atomval = pmExtractValue(int valfmt, const pmValue * ival,
 int itype,
 pmAtomValue *oval,
 int otype)

The pmValue structure is embedded within the pmResult structure, which is used to return one or more
performance metrics; see the pmFetch man page.

All performance metric values may be encoded in a pmAtomValue union, defined in Example 3.18, “
pmAtomValue Structure”:

Example 3.18. pmAtomValue Structure

/* Generic Union for Value-Type conversions */
typedef union {
 __int32_t l; /* 32-bit signed */
 __uint32_t ul; /* 32-bit unsigned */
 __int64_t ll; /* 64-bit signed */
 __uint64_t ull; /* 64-bit unsigned */
 float f; /* 32-bit floating point */
 double d; /* 64-bit floating point */
 char *cp; /* char ptr */
 void *vp; /* void ptr */
} pmAtomValue;

The pmExtractValue function provides a convenient mechanism for extracting values from the pmValue
part of a pmResult structure, optionally converting the data type, and making the result available to the
application programmer.

The itype argument defines the data type of the input value held in ival according to the storage format
defined by valfmt (see the pmFetch man page). The otype argument defines the data type of the result
to be placed in oval. The value for itype is typically extracted from a pmDesc structure, following a
call to pmLookupDesc for a particular performance metric.

Table 3.3, “PMAPI Type Conversion” defines the various possibilities for the type conversion. The input
type (itype) is shown vertically, and the output type (otype) horizontally. The following rules apply:

• Y means the conversion is always acceptable.

• N means conversion can never be performed (function returns PM_ERR_CONV).

• P means the conversion may lose accuracy (but no error status is returned).

• T means the result may be subject to high-order truncation (if this occurs the function returns
PM_ERR_TRUNC).

• S means the conversion may be impossible due to the sign of the input value (if this occurs the function
returns PM_ERR_SIGN).

If an error occurs, oval is set to zero (or NULL).

Note

Note that some of the conversions involving the PM_TYPE_STRING and
PM_TYPE_AGGREGATE types are indeed possible, but are marked N; the rationale is that

PMAPI--The
Performance Metrics API

87

pmExtractValue should not attempt to duplicate functionality already available in the C library
through sscanf and sprintf. No conversion involving the type PM_TYPE_EVENT is supported.

Table 3.3. PMAPI Type Conversion

TYPE 32 U32 64 U64 FLOAT DBLE STRING AGGR EVENT

32 Y S Y S P P N N N

U32 T Y Y Y P P N N N

64 T T,S Y S P P N N N

u64 T T T Y P P N N N

FLOAT P, T P, T, S P, T P, T, S Y Y N N N

DBLE P, T P, T, S P, T P, T, S P Y N N N

STRING N N N N N N Y N N

AGGR N N N N N N N Y N

EVENT N N N N N N N N N

In the cases where multiple conversion errors could occur, the first encountered error is returned, and the
order of checking is not defined.

If the output conversion is to one of the pointer types, such as otype PM_TYPE_STRING or
PM_TYPE_AGGREGATE, then the value buffer is allocated by pmExtractValue using malloc, and it is
the caller's responsibility to free the space when it is no longer required; see the malloc(3) and free(3)
man pages.

Although this function appears rather complex, it has been constructed to assist the development of
performance tools that convert values, whose type is known only through the type field in a pmDesc
structure, into a canonical type for local processing.

The python bindings extract a value from a pmValue struct ival stored in format valfmt (see pmFetch),
and convert its type from itype to otype.

pmConvScale Function

int
pmConvScale(int type, const pmAtomValue *ival, const pmUnits *iunit,
pmAtomValue *oval, pmUnits *ounit)
Python:
pmAtomValue atomval = pmConvScale(int itype, pmAtomValue value,
 pmDesc* pmdesc , int descidx, int otype)

Given a performance metric value pointed to by ival, multiply it by a scale factor and return the value
in oval. The scaling takes place from the units defined by iunit into the units defined by ounit. Both
input and output units must have the same dimensionality.

The performance metric type for both input and output values is determined by type, the value for
which is typically extracted from a pmDesc structure, following a call to pmLookupDesc for a particular
performance metric.

 pmConvScale is most useful when values returned through pmFetch (and possibly extracted using
pmExtractValue) need to be normalized into some canonical scale and units for the purposes of
computation.

PMAPI--The
Performance Metrics API

88

The python bindings convert a value pointed to by pmdesc entry descidx to a different scale otype.

pmUnitsStr Function

const char *pmUnitsStr(const pmUnits *pu)
char *pmUnitsStr_r(const pmUnits *pu, char *buf, int buflen)
Python:
"units string" = pmUnitsStr(pmUnits pmunits)

As an aid to labeling graphs and tables, or for error messages, pmUnitsStr takes a dimension and scale
specification as per pu, and returns the corresponding text string.

pu is typically from a pmDesc structure, for example, as returned by pmLookupDesc.

If *pu were {1, -2, 0, PM_SPACE_MBYTE, PM_TIME_MSEC, 0}, then the result string would
be Mbyte/sec^2.

In the case of pmUnitsStr, the string value is held in a single static buffer; so concurrent calls may not
produce the desired results. The pmUnitsStr_r function allows a buffer and length to be passed in, into
which the units are stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindings translate a pmUnits struct pmunits to a readable string.

pmIDStr Function

const char *pmIDStr(pmID pmid)
char *pmIDStr_r(pmID pmid, char *buf, int buflen)
Python:
"ID string" = pmIDStr(int pmID)

For use in error and diagnostic messages, return a human readable version of the specified PMID, with
each of the internal domain, cluster, and item subfields appearing as decimal numbers, separated
by periods.

In the case of pmIDStr, the string value is held in a single static buffer; so concurrent calls may not produce
the desired results. The pmIDStr_r function allows a buffer and length to be passed in, into which the
identifier is stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindings translate a pmID pmid to a readable string.

pmInDomStr Function

const char *pmInDomStr(pmInDom indom)
char *pmInDomStr_r(pmInDom indom, char *buf, int buflen)
Python:
"indom" = pmGetInDom(pmDesc pmdesc)

For use in error and diagnostic messages, return a human readable version of the specified instance
domain identifier, with each of the internal domain and serial subfields appearing as decimal numbers,
separated by periods.

In the case of pmInDomStrr, the string value is held in a single static buffer; so concurrent calls may not
produce the desired results. The pmInDomStr_r function allows a buffer and length to be passed in, into
which the identifier is stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindings translate an instance domain ID pointed to by a pmDesc pmdesc to a readable string.

PMAPI--The
Performance Metrics API

89

pmTypeStr Function

const char *pmTypeStr(int type)
char *pmTypeStr_r(int type, char *buf, int buflen)
Python:
"type" = pmTypeStr(int type)

Given a performance metric type, produce a terse ASCII equivalent, appropriate for use in error and
diagnostic messages.

Examples are “32” (for PM_TYPE_32), “U64” (for PM_TYPE_U64), “AGGREGATE” (for
PM_TYPE_AGGREGATE), and so on.

In the case of pmTypeStr, the string value is held in a single static buffer; so concurrent calls may not
produce the desired results. The pmTypeStr_r function allows a buffer and length to be passed in, into
which the identifier is stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindings translate a performance metric type to a readable string. Constants are available for
the types, e.g. c_api.PM_TYPE_FLOAT, by importing cpmapi.

pmAtomStr Function

const char *pmAtomStr(const pmAtomValue *avp, int type)
char *pmAtomStr_r(const pmAtomValue *avp, int typechar *buf, int buflen)
Python:
"value" = pmAtomStr(atom, type)

Given the pmAtomValue identified by avp, and a performance metric type, generate the corresponding
metric value as a string, suitable for diagnostic or report output.

In the case of pmAtomStr, the string value is held in a single static buffer; so concurrent calls may not
produce the desired results. The pmAtomStr_r function allows a buffer and length to be passed in, into
which the identifier is stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindings translate a pmAtomValue atom having performance metric type to a readable
string. Constants are available for the types, e.g. c_api.PM_TYPE_U32, by importing cpmapi.

pmNumberStr Function

const char *pmNumberStr(double value)
char *pmNumberStr_r(double value, char *buf, int buflen)

The pmNumberStr function returns the address of a static 8-byte buffer that holds a null-byte terminated
representation of value suitable for output with fixed-width fields.

The value is scaled using multipliers in powers of one thousand (the decimal kilo) and has a bias that
provides greater precision for positive numbers as opposed to negative numbers. The format depends on
the sign and magnitude of value.

pmPrintValue Function

void pmPrintValue(FILE *f, int valfmt, int type, const pmValue *val,
int minwidth)
Python:

PMAPI--The
Performance Metrics API

90

pmPrintValue(FILE* file, pmResult pmresult, pmdesc, vset_index, vlist_index, min_width)

 The value of a single performance metric (as identified by val) is printed on the standard I/O stream
identified by f. The value of the performance metric is interpreted according to the format of val as
defined by valfmt (from a pmValueSet within a pmResult) and the generic description of the metric's
type from a pmDesc structure, passed in through.

If the converted value is less than minwidth characters wide, it will have leading spaces to pad the output
to a width of minwidth characters.

Example 3.19, “Using pmPrintValue to Print Values” illustrates using pmPrintValue to print the values
from a pmResult structure returned via pmFetch:

Example 3.19. Using pmPrintValue to Print Values

 int numpmid, i, j, sts;
 pmID pmidlist[10];
 pmDesc desc[10];
 pmResult *result;

 /* set up PMAPI context, numpmid and pmidlist[] ... */
 /* get metric descriptors */
 for (i = 0; i < numpmid; i++) {
 if ((sts = pmLookupDesc(pmidlist[i], &desc[i])) < 0) {
 printf("pmLookupDesc(pmid=%s): %s\n",
 pmIDStr(pmidlist[i]), pmErrStr(sts));
 exit(1);
 }
 }
 if ((sts = pmFetch(numpmid, pmidlist, &result)) >= 0) {
 /* once per metric */
 for (i = 0; i < result->numpmid; i++) {
 printf("PMID: %s", pmIDStr(result->vset[i]->pmid));
 /* once per instance for this metric */
 for (j = 0; j < result->vset[i]->numval; j++) {
 printf(" [%d]", result->vset[i]->vlist[j].inst);
 pmPrintValue(stdout, result->vset[i]->valfmt,
 desc[i].type,
 &result->vset[i]->vlist[j],
 8);
 }
 putchar('\n');
 }
 pmFreeResult(result);
 }
 else
 printf("pmFetch: %s\n", pmErrStr(sts));

Print the value of a pmresult pointed to by vset_index/vlist_index and described by pmdesc.
The format of a pmResult is described in pmResult The python bindings can use sys.__stdout__ as a value
for file to display to stdout.

pmflush Function

int pmflush(void);

PMAPI--The
Performance Metrics API

91

Python:
int status = pmflush()

The pmflush function causes the internal buffer which is shared with pmprintf to be either displayed in
a window, printed on standard error, or flushed to a file and the internal buffer to be cleared.

The PCP_STDERR environment variable controls the output technique used by pmflush:

• If PCP_STDERR is unset, the text is written onto the stderr stream of the caller.

• If PCP_STDERR is set to the literal reserved word DISPLAY, then the text is displayed as a GUI
dialogue using pmconfirm.

The pmflush function returns a value of zero on successful completion. A negative value is returned if an
error was encountered, and this can be passed to pmErrStr to obtain the associated error message.

pmprintf Function

int pmprintf(const char *fmt, ... /*args*/);
Python:
pmprintf("fmt", ... /*args*/);

The pmprintf function appends the formatted message string to an internal buffer shared by the pmprintf
and pmflush functions, without actually producing any output. The fmt argument is used to control the
conversion, formatting, and printing of the variable length args list.

The pmprintf function uses the mkstemp function to securely create a pcp-prefixed temporary file in
${PCP_TMP_DIR}. This temporary file is deleted when pmflush is called.

On successful completion, pmprintf returns the number of characters transmitted. A negative value is
returned if an error was encountered, and this can be passed to pmErrStr to obtain the associated error
message.

pmSortInstances Function

void pmSortInstances(pmResult *result)
Python:
pmSortInstances (pmResult* pmresult)

 The pmSortInstances function may be used to guarantee that for each performance metric in the result
from pmFetch, the instances are in ascending internal instance identifier sequence. This is useful when
trying to compute rates from two consecutive pmFetch results, where the underlying instance domain or
metric availability is not static.

pmParseInterval Function

int pmParseInterval(const char *string, struct timeval *rslt, char **errmsg)
Python:
(struct timeval, "error message") = pmParseInterval("time string")

The pmParseInterval function parses the argument string specifying an interval of time and fills in the
tv_sec and tv_usec components of the rslt structure to represent that interval. The input string is
most commonly the argument following a -t command line option to a PCP application, and the syntax
is fully described in the PCPIntro(1) man page.

PMAPI--The
Performance Metrics API

92

pmParseInterval returns 0 and errmsg is undefined if the parsing is successful. If the given string does
not conform to the required syntax, the function returns -1 and a dynamically allocated error message
string in errmsg.

The error message is terminated with a newline and includes the text of the input string along with an
indicator of the position at which the error was detected as shown in the following example:

 4minutes 30mumble
 ^ -- unexpected value

In the case of an error, the caller is responsible for calling free to release the space allocated for errmsg.

pmParseMetricSpec Function

int pmParseMetricSpec(const char *string, int isarch, char *source,
 pmMetricSpec **rsltp, char **errmsg)
Python:
(pmMetricSpec metricspec, "error message") =
 pmParseMetricSpec("metric specification", isarch, source)

The pmParseMetricSpec function accepts a string specifying the name of a PCP performance metric,
and optionally the source (either a hostname, a set of PCP archive logs, or a local context) and instances
for that metric. The syntax is described in the PCPIntro(1) man page.

If neither host nor archive component of the metric specification is provided, the isarch and source
arguments are used to fill in the returned pmMetricSpec structure. In Example 3.20, “ pmMetricSpec
Structure”, the pmMetricSpec structure, which is returned via rsltp, represents the parsed string.

Example 3.20. pmMetricSpec Structure

typedef struct {
 int isarch; /* source type: 0 -> host, 1 -> archive, 2 -> local context */
 char *source; /* name of source host or archive */
 char *metric; /* name of metric */
 int ninst; /* number of instances, 0 -> all */
 char *inst[1]; /* array of instance names */
} pmMetricSpec;

The pmParseMetricSpec function returns 0 if the given string was successfully parsed. In this case, all
the storage allocated by pmParseMetricSpec can be released by a single call to the free function by using
the address returned from pmMetricSpec via rsltp. The convenience macro pmFreeMetricSpec is a
thinly disguised wrapper for free.

The pmParseMetricSpec function returns 0 if the given string was successfully parsed. It returns
PM_ERR_GENERIC and a dynamically allocated error message string in errmsg if the given string does
not parse. In this situation, the error message string can be released with the free function.

In the case of an error, rsltp is undefined. In the case of success, errmsg is undefined. If rsltp-
>ninst is 0, then rsltp->inst[0] is undefined.

PMAPI Programming Issues and Examples
 The following issues and examples are provided to enable you to create better custom performance
monitoring tools.

PMAPI--The
Performance Metrics API

93

The source code for a sample client (pmclient) using the PMAPI is shipped as part of the PCP package.
See the pmclient(1) man page, and the source code, located in ${PCP_DEMOS_DIR}/pmclient.

Symbolic Association between a Metric's Name and
Value

 A common problem in building specific performance tools is how to maintain the association between
a performance metric's name, its access (instantiation) method, and the application program variable that
contains the metric's value. Generally this results in code that is easily broken by bug fixes or changes
in the underlying data structures. The PMAPI provides a uniform method for instantiating and accessing
the values independent of the underlying implementation, although it does not solve the name-variable
association problem. However, it does provide a framework within which a manageable solution may be
developed.

Fundamentally, the goal is to be able to name a metric and reference the metric's value in a manner that
is independent of the order of operations on other metrics; for example, to associate the LOADAV macro
with the name kernel.all.load, and then be able to use LOADAV to get at the value of the corresponding
metric.

 The one-to-one association between the ordinal position of the metric names is input to pmLookupName
and the PMIDs returned by this function, and the one-to-one association between the PMIDs input to
pmFetch and the values returned by this function provide the basis for an automated solution.

The tool pmgenmap takes the specification of a list of metric names and symbolic tags, in the order they
should be passed to pmLookupName and pmFetch. For example, pmclient:

 cat ${PCP_DEMOS_DIR}/pmclient/pmnsmap.spec
pmclient_init {
 hinv.ncpu NUMCPU
}

pmclient_sample {
 kernel.all.load LOADAV
 kernel.percpu.cpu.user CPU_USR
 kernel.percpu.cpu.sys CPU_SYS
 mem.freemem FREEMEM
 disk.all.total DKIOPS
}

This pmgenmap input produces the C code in Example 3.21, “C Code Produced by pmgenmap Input”.
It is suitable for including with the #include statement:

Example 3.21. C Code Produced by pmgenmap Input

/*
 * Performance Metrics Name Space Map
 * Built by runme.sh from the file
 * pmnsmap.spec
 * on Thu Jan 9 14:13:49 EST 2014
 *
 * Do not edit this file!
 */

PMAPI--The
Performance Metrics API

94

char *pmclient_init[] = {
#define NUMCPU 0
 "hinv.ncpu",

};

char *pmclient_sample[] = {
#define LOADAV 0
 "kernel.all.load",
#define CPU_USR 1
 "kernel.percpu.cpu.user",
#define CPU_SYS 2
 "kernel.percpu.cpu.sys",
#define FREEMEM 3
 "mem.freemem",
#define DKIOPS 4
 "disk.all.total",

};

Initializing New Metrics
 Using the code generated by pmgenmap, you are now able to easily initialize the application's metric
specifications as shown in Example 3.22, “Initializing Metric Specifications”:

Example 3.22. Initializing Metric Specifications

/* C code fragment from pmclient.c */
numpmid = sizeof(pmclient_sample) / sizeof(char *);
if ((pmidlist = (pmID *)malloc(numpmid * sizeof(pmidlist[0]))) == NULL) {...}
if ((sts = pmLookupName(numpmid, pmclient_sample, pmidlist)) < 0) {...}

The equivalent python code would be
pmclient_sample = ("kernel.all.load", "kernel.percpu.cpu.user",
 "kernel.percpu.cpu.sys", "mem.freemem", "disk.all.total")
pmidlist = context.pmLookupName(pmclient_sample)

At this stage, pmidlist contains the PMID for the five metrics of interest.

Iterative Processing of Values
 Assuming the tool is required to report values every delta seconds, use code similar to that in
Example 3.23, “Iterative Processing”:

Example 3.23. Iterative Processing

/* censored C code fragment from pmclient.c */
while (samples == -1 || samples-- > 0) {
 if ((sts = pmFetch(numpmid, pmidlist, &crp)) < 0) { ... }
 for (i = 0; i < numpmid; i++)
 if ((sts = pmLookupDesc(pmidlist[i], &desclist[i])) < 0) { ... }

PMAPI--The
Performance Metrics API

95

 ...
 pmExtractValue(crp->vset[FREEMEM]->valfmt, crp->vset[FREEMEM]->vlist,
 desclist[FREEMEM].type, &tmp, PM_TYPE_FLOAT);
 pmConvScale(PM_TYPE_FLOAT, &tmp, &desclist[FREEMEM].units,
 &atom, &mbyte_scale);
 ip->freemem = atom.f;
 ...
 __pmtimevalSleep(delta);
}

The equivalent python code would be
FREEMEM = 3
desclist = context.pmLookupDescs(metric_names)
while (samples > 0):
 crp = context.pmFetch(metric_names)
 val = context.pmExtractValue(crp.contents.get_valfmt(FREEMEM),
 crp.contents.get_vlist(FREEMEM, 0),
 desclist[FREEMEM].contents.type,
 c_api.PM_TYPE_FLOAT)
 atom = ctx.pmConvScale(c_api.PM_TYPE_FLOAT, val, desclist, FREEMEM,
 c_api.PM_SPACE_MBYTE)
 (tvdelta, errmsg) = c_api.pmParseInterval(delta)
 c_api.pmtimevalSleep(delta)

Accommodating Program Evolution
 The flexibility provided by the PMAPI and the pmgenmap utility is demonstrated by Example 3.24,
“Adding a Metric”. Consider the requirement for reporting a third metric mem.physmem. This example
shows how to add the line to the specification file:

Example 3.24. Adding a Metric

mem.freemem PHYSMEM

Then regenerate the #include file, and augment pmclient.c:

 pmExtractValue(crp->vset[PHYSMEM]->valfmt, crp->vset[PHYSMEM]->vlist,
 desclist[PHYSMEM].type, &tmp, PM_TYPE_FLOAT);
 pmConvScale(PM_TYPE_FLOAT, &tmp, &desclist[PHYSMEM].units,
 &atom, &mbyte_scale);

The equivalent python code would be:
val = context.pmExtractValue(crp.contents.get_valfmt(PHYSMEM),
 crp.contents.get_vlist(PHYSMEM, 0),
 desclist[PHYSMEM].contents.type,
 c_api.PM_TYPE_FLOAT);

Handling PMAPI Errors
 In Example 3.25, “PMAPI Error Handling”, the simple but complete PMAPI application demonstrates
the recommended style for handling PMAPI error conditions. The python bindings use the exception
mechanism to raise an exception in error cases. The python client can handle this condition by catching
the pmErr exception. For simplicity, no command line argument processing is shown here - in practice
most tools use the pmGetOptions helper interface to assist with initial context creation and setup.

PMAPI--The
Performance Metrics API

96

Example 3.25. PMAPI Error Handling

#include <pcp/pmapi.h>

int
main(int argc, char* argv[])
{
 int sts = 0;
 char *host = "local:";
 char *metric = "mem.freemem";
 pmID pmid;
 pmDesc desc;
 pmResult *result;

 sts = pmNewContext(PM_CONTEXT_HOST, host);
 if (sts < 0) {
 fprintf(stderr, "Error connecting to pmcd on %s: %s\n",
 host, pmErrStr(sts));
 exit(1);
 }
 sts = pmLookupName(1, &metric, &pmid);
 if (sts < 0) {
 fprintf(stderr, "Error looking up %s: %s\n", metric,
 pmErrStr(sts));
 exit(1);
 }
 sts = pmLookupDesc(pmid, &desc);
 if (sts < 0) {
 fprintf(stderr, "Error getting descriptor for %s:%s: %s\n",
 host, metric, pmErrStr(sts));
 exit(1);
 }
 sts = pmFetch(1, &pmid, &result);
 if (sts < 0) {
 fprintf(stderr, "Error fetching %s:%s: %s\n", host, metric,
 pmErrStr(sts));
 exit(1);
 }
 sts = result->vset[0]->numval;
 if (sts < 0) {
 fprintf(stderr, "Error fetching %s:%s: %s\n", host, metric,
 pmErrStr(sts));
 exit(1);
 }
 fprintf(stdout, "%s:%s = ", host, metric);
 if (sts == 0)
 puts("(no value)");
 else {
 pmValueSet *vsp = result->vset[0];
 pmPrintValue(stdout, vsp->valfmt, desc.type,
 &vsp->vlist[0], 5);
 printf(" %s\n", pmUnitsStr(&desc.units));
 }
 return 0;

PMAPI--The
Performance Metrics API

97

}

The equivalent python code would be:
import sys
import traceback
from pcp import pmapi
from cpmapi import PM_TYPE_U32

try:
 context = pmapi.pmContext()
 pmid = context.pmLookupName("mem.freemem")
 desc = context.pmLookupDescs(pmid)
 result = context.pmFetch(pmid)
 freemem = context.pmExtractValue(result.contents.get_valfmt(0),
 result.contents.get_vlist(0, 0),
 desc[0].contents.type,
 PM_TYPE_U32)
 print "freemem is " + str(int(freemem.ul))

except pmapi.pmErr, error:
 print "%s: %s" % (sys.argv[0], error.message())
except Exception, error:
 sys.stderr.write(str(error) + "\n")
 sys.stderr.write(traceback.format_exc() + "\n")

Compiling and Linking PMAPI Applications
 Typical PMAPI applications require the following line to include the function prototype and data structure
definitions used by the PMAPI.

#include <pcp/pmapi.h>

Some applications may also require these header files: <pcp/libpcp.h> and <pcp/pmda.h>.

The run-time environment of the PMAPI is mostly found in the libpcp library; so to link a generic
PMAPI application requires something akin to the following command:

 cc mycode.c -lpcp

98

Chapter 4. Instrumenting Applications

Table of Contents
Application and Performance Co-Pilot Relationship .. 99
Performance Instrumentation and Sampling .. 100
MMV PMDA Design ... 100
Memory Mapped Values API .. 101

Starting and Stopping Instrumentation ... 101
Getting a Handle on Mapped Values .. 103
Updating Mapped Values .. 104
Elapsed Time Measures .. 105

Performance Instrumentation and Tracing .. 106
Trace PMDA Design .. 106

Application Interaction ... 106
Sampling Techniques ... 107
Configuring the Trace PMDA .. 109

Trace API .. 110
Transactions ... 110
Point Tracing .. 111
Observations and Counters .. 111
Configuring the Trace Library ... 112

 This chapter provides an introduction to ways of instrumenting applications using PCP.

 The first section covers the use of the Memory Mapped Value (MMV) Performance Metrics Domain Agent
(PMDA) to generate customized metrics from an application. This provides a robust, extremely efficient
mechanism for transferring custom instrumentation into the PCP infrastructure. It has been successfully
deployed in production environments for many years, has proven immensely valuable in these situations,
and can be used to instrument applications written in a number of programming languages.

The Memory Mapped Value library and PMDA is supported on every PCP platform, and is enabled by
default.

Note

A particularly expansive Java API is available from the separate Parfait [http://code.google.com/
p/parfait/] project. It supports both the existing JVM instrumentation, and custom application
metric extensions.

 The chapter also includes information on how to use the MMV library (libpcp_mmv) for instrumenting
an application. The example programs are installed in ${PCP_DEMOS_DIR}/mmv.

The second section covers the design of the Trace PMDA, in an effort to explain how to configure the
agent optimally for a particular problem domain. This information supplements the functional coverage
which the man pages provide to both the agent and the library interfaces.

 This part of the chapter also includes information on how to use the Trace PMDA and its associated
library (libpcp_trace) for instrumenting applications. The example programs are installed in
${PCP_DEMOS_DIR}/trace.

http://code.google.com/p/parfait/
http://code.google.com/p/parfait/
http://code.google.com/p/parfait/

Instrumenting Applications

99

Warning

The current PCP trace library is a relatively heavy-weight solution, issuing multiple system calls
per trace point, runs over a TCP/IP socket even locally and performs no event batching. As such
it is not appropriate for production application instrumentation at this stage.

A revised application tracing library and PMDA are planned which will be light-weight, suitable for
production system tracing, and support event metrics and other advances in end-to-end distributed
application tracing.

 The application instrumentation libraries are designed to encourage application developers to embed calls
in their code that enable application performance data to be exported. When combined with system-level
performance data, this feature allows total performance and resource demands of an application to be
correlated with application activity.

For example, developers can provide the following application performance metrics:

• Computation state (especially for codes with major shifts in resource demands between phases of their
execution)

• Problem size and parameters, that is, degree of parallelism throughput in terms of sub-problems solved,
iteration count, transactions, data sets inspected, and so on

• Service time by operation type

Application and Performance Co-Pilot
Relationship

 The relationship between an application, the pcp_mmv and pcp_trace instrumentation libraries, the
MMV and Trace PMDAs, and the rest of the PCP infrastructure is shown in Figure 4.1, “Application and
PCP Relationship”:

Instrumenting Applications

100

Figure 4.1. Application and PCP Relationship

PMDA
Trace

PMDAPMDA

pmcd

Monitor

Kernel DBMS End-user
application

ABC

Monitor

PMAPI PMAPI

lib
pc

p_
tr

ac
e

MMV
PMDA

End-user
application

XYZ

lib
pc

p_
m

m
v

Once the application performance metrics are exported into the PCP framework, all of the PCP tools may
be leveraged to provide performance monitoring and management, including:

• Two- and three-dimensional visualization of resource demands and performance, showing concurrent
system activity and application activity.

• Transport of performance data over the network for distributed performance management.

• Archive logging for historical records of performance, most useful for problem diagnosis, postmortem
analysis, performance regression testing, capacity planning, and benchmarking.

• Automated alarms when bad performance is observed. These apply both in real-time or when scanning
archives of historical application performance.

Performance Instrumentation and Sampling
 The pcp_mmv library provides function calls to assist with extracing important performance metrics
from a program into a shared, in-memory location such that the MMV PMDA can examine and
serve that information on behalf of PCP client tool requests. The pcp_mmv library is described in
the mmv_stats_init(3), mmv_lookup_value_desc(3), mmv_inc_value(3) man pages. Additionally, the
format of the shared memory mappings is described in detail in mmv(5).

MMV PMDA Design
An application instrumented with memory mapped values directly updates the memory that backs the
metric values it exports. The MMV PMDA reads those values directly, from the same memory that
the application is updating, when current values are sampled on behalf of PMAPI client tools. This
relationship, and a simplified MMV API, are shown in Figure 4.2, “Memory Mapped Page Sharing”.

Instrumenting Applications

101

Figure 4.2. Memory Mapped Page Sharing

/usr/bin/acme
base = mmv_stats_init(
 "widget.count",
 "widget.bytes", ...)

{
 sz = acme_build_one_widget()
 mmv_inc_value(base, thruput, sz)
 mmv_inc_value(base, iops, 1)
}

iops = mmv_lookup_value_desc(
 base, "widget.count")
thruput = mmv_lookup_value_desc(
 base, "widget.bytes")

MMV PMDA

mmv_disk_header

mmv_disk_toc

mmv_disk_toc

mmv_disk_metric

mmv_disk_value

mmv_disk_value

mmv_disk_value

mmv_disk_metric

iops
thruput

pmLookupDesc ...
 mmv.widget.count:
 mmv.widget.bytes:

base (+X)
base (+Y)

pmFetch ...
 mmv.widget.count:
 mmv.widget.bytes:

Shared Memory
Mappings

It is worth noting that once the metrics of an application have been registered via the pcp_mmv library
initialisation API, subsequent interactions with the library are not intrusive to the instrumented application.
At the points where values are updated, the only cost involved is the memory mapping update, which is
a single memory store operation. There is no need to explicitly transfer control to the MMV PMDA, nor
allocate memory, nor make system or library calls. The PMDA will only sample the values at times driven
by PMAPI client tools, and this places no overhead on the instrumented application.

Memory Mapped Values API
 The libpcp_mmv Application Programming Interface (API) can be called from C, C++, Perl and Python
(a separate project, Parfait, services the needs of Java applications). Each language has access to the
complete set of functionality offered by libpcp_mmv. In most cases, the calling conventions differ only
slightly between languages - in the case of Java and Parfait, they differ significantly however.

Starting and Stopping Instrumentation
 Instrumentation is begun with an initial call to mmv_stats_init, and ended with a call to
mmv_stats_stop. These calls manipulate global state shared by the library and application. These are
the only calls requiring synchonization and a single call to each is typically performed early and late in the
life of the application (although they can be used to reset the library state as well, at any time). As such, the
choice of synchonization primitive is left to the application, and none is currently performed by the library.

void *mmv_stats_init(const char *name, int cluster, mmv_stats_flags_t flags,
 const mmv_metric_t *stats, int nstats,
 const mmv_indom_t *indoms, int nindoms)

The name should be a simple symbolic name identifying the application. It is usually used as the first
application-specific part of the exported metric names, as seen from the MMV PMDA. This behavior
can be overriden using the flags parameter, with the MMV_FLAG_NOPREFIX flag. In the example
below, full metric names such as mmv.acme.products.count will be created by the MMV PMDA.
With the MMV_FLAG_NOPREFIX flag set, that would instead become mmv.products.count. It is
recommended to not disable the prefix - doing so requires the applications to ensure naming conflicts do
not arise in the MMV PMDA metric names.

Instrumenting Applications

102

The cluster identifier is used by the MMV PMDA to further distinguish different applications, and
is directly used for the MMV PMDA PMID cluster field described in Example 2.3, “ __pmID_int
Structure”, for all MMV PMDA metrics.

All remaining parameters to mmv_stats_init define the metrics and instance domains that exist
within the application. These are somewhat analagous to the final parameters of pmdaInit(3), and
are best explained using Example 4.1, “Memory Mapped Value Instance Structures” and Example 4.2,
“Memory Mapped Value Metrics Structures”. As mentioned earlier, the full source code for this example
instrumented application can be found in ${PCP_DEMOS_DIR}/mmv.

Example 4.1. Memory Mapped Value Instance Structures

#include <pcp/pmapi.h>
#include <pcp/mmv_stats.h>

static mmv_instances_t products[] = {
 { .internal = 0, .external = "Anvils" },
 { .internal = 1, .external = "Rockets" },
 { .internal = 2, .external = "Giant_Rubber_Bands" },
};
#define ACME_PRODUCTS_INDOM 61
#define ACME_PRODUCTS_COUNT (sizeof(products)/sizeof(products[0]))

static mmv_indom_t indoms[] = {
 { .serial = ACME_PRODUCTS_INDOM,
 .count = ACME_PRODUCTS_COUNT,
 .instances = products,
 .shorttext = "Acme products",
 .helptext = "Most popular products produced by the Acme Corporation",
 },
};

The above data structures initialize an instance domain of the set of products produced in a factory by the
fictional "Acme Corporation". These structures are directly comparable to several concepts we have seen
already (and for good reason - the MMV PMDA must interpret the applications intentions and properly
export instances on its behalf):

• mmv_instances_t maps to pmdaInstid, as in Example 2.7, “ pmdaInstid Structure”

• mmv_indom_t maps to pmdaIndom, as in Example 2.8, “ pmdaIndom Structure” - the major difference
is the addition of oneline and long help text, the purpose of which should be self-explanatory at this stage.

• serial numbers, as in Example 2.9, “ __pmInDom_int Structure”

Next, we shall create three metrics, all of which use this instance domain. These are the
mmv.acme.products metrics, and they reflect the rates at which products are built by the machines in
the factory, how long these builds take for each product, and how long each product type spends queued
(while waiting for factory capacity to become available).

Example 4.2. Memory Mapped Value Metrics Structures

static mmv_metric_t metrics[] = {
 { .name = "products.count",
 .item = 7,
 .type = MMV_TYPE_U64,
 .semantics = MMV_SEM_COUNTER,

Instrumenting Applications

103

 .dimension = MMV_UNITS(0,0,1,0,0,PM_COUNT_ONE),
 .indom = ACME_PRODUCTS_INDOM,
 .shorttext = "Acme factory product throughput",
 .helptext =
"Monotonic increasing counter of products produced in the Acme Corporation\n"
"factory since starting the Acme production application. Quality guaranteed.",
 },
 { .name = "products.time",
 .item = 8,
 .type = MMV_TYPE_U64,
 .semantics = MMV_SEM_COUNTER,
 .dimension = MMV_UNITS(0,1,0,0,PM_TIME_USEC,0),
 .indom = ACME_PRODUCTS_INDOM,
 .shorttext = "Machine time spent producing Acme products",
 .helptext =
"Machine time spent producing Acme Corporation products. Does not include\n"
"time in queues waiting for production machinery.",
 },
 { .name = "products.queuetime",
 .item = 10,
 .type = MMV_TYPE_U64,
 .semantics = MMV_SEM_COUNTER,
 .dimension = MMV_UNITS(0,1,0,0,PM_TIME_USEC,0),
 .indom = ACME_PRODUCTS_INDOM,
 .shorttext = "Queued time while producing Acme products",
 .helptext =
"Time spent in the queue waiting to build Acme Corporation products,\n"
"while some other Acme product was being built instead of this one.",
 },
};
#define INDOM_COUNT (sizeof(indoms)/sizeof(indoms[0]))
#define METRIC_COUNT (sizeof(metrics)/sizeof(metrics[0]))

As was the case with the "products" instance domain before, these metric-defining data structures are
directly comparable to PMDA data structures described earlier:

• mmv_metric_t maps to a pmDesc structure, as in Example 3.2, “ pmDesc Structure”

• MMV_TYPE, MMV_SEM, and MMV_UNITS map to PMAPI constructs for type, semantics,
dimensionality and scale, as in Example 3.3, “ pmUnits and pmDesc Structures”

• item number, as in Example 2.3, “ __pmID_int Structure”

For the most part, all types and macros map directly to their core PCP counterparts, which the MMV
PMDA will use when exporting the metrics. One important exception is the introduction of the metric type
MMV_TYPE_ELAPSED, which is discussed further in the section called “Elapsed Time Measures”.

The compound metric types - aggregate and event type metrics - are not supported by the MMV format.

Getting a Handle on Mapped Values
Once metrics (and the instance domains they use) have been registered, the memory mapped file has been
created and is ready for use. In order to be able to update the individual metric values, however, we must
find get a handle to the value. This is done using the mmv_lookup_value_desc function, as shown in
Example 4.3, “Memory Mapped Value Handles”.

Instrumenting Applications

104

Example 4.3. Memory Mapped Value Handles

#define ACME_CLUSTER 321 /* PMID cluster identifier */

int
main(int argc, char * argv[])
{
 void *base;
 pmAtomValue *count[ACME_PRODUCTS_COUNT];
 pmAtomValue *machine[ACME_PRODUCTS_COUNT];
 pmAtomValue *inqueue[ACME_PRODUCTS_COUNT];
 unsigned int working;
 unsigned int product;
 unsigned int i;

 base = mmv_stats_init("acme", ACME_CLUSTER, 0,
 metrics, METRIC_COUNT, indoms, INDOM_COUNT);
 if (!base) {
 perror("mmv_stats_init");
 return 1;
 }

 for (i = 0; i < ACME_PRODUCTS_COUNT; i++) {
 count[i] = mmv_lookup_value_desc(base,
 "products.count", products[i].external);
 machine[i] = mmv_lookup_value_desc(base,
 "products.time", products[i].external);
 inqueue[i] = mmv_lookup_value_desc(base,
 "products.queuetime", products[i].external);
 }

Space in the mapping file for every value is set aside at initialization time (by the mmv_stats_init function)
- that is, space for each and every metric, and each value (instance) of each metric when an instance domain
is used. To find the handle to the space set aside for one individual value requires the tuple of base memory
address of the mapping, metric name, and instance name. In the case of metrics with no instance domain,
the final instance name parameter should be either NULL or the empty string.

Updating Mapped Values

At this stage we have individual handles (pointers) to each instrumentation point, we can now start
modifying these values and observing changes through the PCP infrastructure. Notice that each handle is
simply the canonical pmAtomValue pointer, as defined in Example 3.18, “ pmAtomValue Structure”,
which is a union providing sufficient space to hold any single value.

This pointer can be either manipulated directly, or using helper functions provided by the pcp_mmv API,
such as the mmv_stats_inc and mmv_stats_set functions.

Example 4.4. Memory Mapped Value Updates

 while (1) {
 /* choose a random number between 0-N -> product */
 product = rand() % ACME_PRODUCTS_COUNT;

Instrumenting Applications

105

 /* assign a time spent "working" on this product */
 working = rand() % 50000;

 /* pretend to "work" so process doesn't burn CPU */
 usleep(working);

 /* update the memory mapped values for this one: */
 /* one more product produced and work time spent */
 mmv_inc_value(base, machine[product], working); /* API */
 count[product]->ull += 1; /* or direct mmap update */

 /* all other products are "queued" for this time */
 for (i = 0; i < ACME_PRODUCTS_COUNT; i++)
 if (i != product)
 mmv_inc_value(base, inqueue[i], working);
 }

At this stage, it will be informative to compile and run the complete example program, which can be found
in ${PCP_DEMOS_DIR}/mmv/acme.c. There is an associated Makefile to build it, in the same
directory. Running the acme binary creates the instrumentation shown in Example 4.5, “Memory Mapped
Value Reports”, with live values letting us explore simple queueing effects in products being created on
the ACME factory floor.

Example 4.5. Memory Mapped Value Reports

 pminfo -m mmv.acme
mmv.acme.products.queuetime PMID: 70.321.10
mmv.acme.products.time PMID: 70.321.8
mmv.acme.products.count PMID: 70.321.7

pmval -f2 -s3 mmv.acme.products.time
metric: mmv.acme.products.time
host: localhost
semantics: cumulative counter (converting to rate)
units: microsec (converting to time utilization)
samples: 3
interval: 1.00 sec

 Anvils Rockets Giant_Rubber_Bands
 0.37 0.12 0.50
 0.35 0.25 0.38
 0.57 0.20 0.23

Experimentation with the algorithm from Example 4.4, “Memory Mapped Value Updates” is encouraged.
In particular, observe the effects of rate conversion (counter metric type) of a metric with units of
"time" (PM_TIME_*). The reported values are calculated over a sampling interval, which also has units
of "time", forming a utilization. This is extremely valuable performance analysis currency - comparable
metrics would include processor utilization, disk spindle utilization, and so forth.

Elapsed Time Measures
 One problem with the instrumentation model embodied by the pcp_mmv library is providing timing
information for long-running operations. For instrumenting long-running operations, like uploading

Instrumenting Applications

106

downloading a file, the overall operation may be broken into smaller, discrete units of work which can be
easily instrumented in terms of operations and througput measures. In other cases, there are no divisible
units for long-running operations (for example a black-box library call) and instrumenting these operations
presents a challenge. Sometimes the best that can be done is adding the instrumentation point at the
completion of the operation, and simply accept the "bursty" nature of this approach. In these problematic
cases, the work completed in one sampling-interval may have begun several intervals before, from the
point of view of the monitoring tool, which can lead to misleading results.

One technique that is available to combat this is through use of the MMV_TYPE_ELAPSED metric
type, which provides the concept of a "timed section" of code. This mechanism stores the start
time of an operation along with the mapped metric value (an "elapsed time" counter), via the
mmv_stats_interval_start instrumentation function. Then, with help from the MMV PMDA which
recognizes this type, the act of sampling the metric value causes an interim timestamp to be taken (by
the MMV PMDA, not the application) and combined with the initial timestamp to form a more accurate
reflection of time spent within the timed section, which effectively smooths out the bursty nature of the
instrumentation.

The completion of each timed section of code is marked by a call to mmv_stats_interval_end which
signifies to the MMV PMDA that the operation is not active, and no extra "in-progress" time should be
applied to the exported value. At that time, the elapsed time for the entire operation is calculated and
accounted toward metrics value.

Performance Instrumentation and Tracing
 The pcp_trace library provides function calls for identifying sections of a program as transactions or
events for examination by the trace PMDA, a user command called pmdatrace. The pcp_trace library
is described in the pmdatrace(3) man page

The monitoring of transactions using the Performance Co-Pilot (PCP) infrastructure begins with a
pmtracebegin call. Time is recorded from there to the corresponding pmtraceend call (with matching
tag identifier). A transaction in progress can be cancelled by calling pmtraceabort.

A second form of program instrumentation is available with the pmtracepoint function. This is a simpler
form of monitoring that exports only the number of times a particular point in a program is passed.
The pmtraceobs and pmtracecount functions have similar semantics, but the former allows an arbitrary
numeric value to be passed to the trace PMDA.

The pmdatrace command is a PMDA that exports transaction performance metrics from application
processes using the pcp_trace library; see the pmdatrace(1) man page for details.

Trace PMDA Design
Trace PMDA design covers application interaction, sampling techniques, and configuring the trace PMDA.

Application Interaction

 Figure 4.3, “Trace PMDA Overview” describes the general state maintained within the trace PMDA.

Instrumenting Applications

107

Figure 4.3. Trace PMDA Overview

lib
pc

p_
tra

ce

Instrumented
Applications

Trace PMDA

lib
pc

p_
tra

ce

PDU

I/O

trace.*.count metrics

Event
Counters

trace.*.time metrics

Response Time
Statistics

(time averaging)

 Applications that are linked with the libpcp_trace library make calls through the trace Application
Programming Interface (API). These calls result in interprocess communication of trace data between
the application and the trace PMDA. This data consists of an identification tag and the performance data
associated with that particular tag. The trace PMDA aggregates the incoming information and periodically
updates the exported summary information to describe activity in the recent past.

 As each protocol data unit (PDU) is received, its data is stored in the current working buffer. At the same
time, the global counter associated with the particular tag contained within the PDU is incremented. The
working buffer contains all performance data that has arrived since the previous time interval elapsed.
For additional information about the working buffer, see the section called “Rolling-Window Periodic
Sampling”.

Sampling Techniques
 The trace PMDA employs a rolling-window periodic sampling technique. The arrival time of the data at
the trace PMDA in conjunction with the length of the sampling period being maintained by the PMDA
determines the recency of the data exported by the PMDA. Through the use of rolling-window sampling,
the trace PMDA is able to present a more accurate representation of the available trace data at any given
time than it could through use of simple periodic sampling.

 The rolling-window sampling technique affects the metrics in Example 4.6, “Rolling-Window Sampling
Technique”:

Example 4.6. Rolling-Window Sampling Technique

trace.observe.rate
trace.counter.rate
trace.point.rate
trace.transact.ave_time
trace.transact.max_time
trace.transact.min_time
trace.transact.rate

The remaining metrics are either global counters, control metrics, or the last seen observation value. the
section called “Trace API”, documents in more detail all metrics exported by the trace PMDA.

Instrumenting Applications

108

Simple Periodic Sampling

 The simple periodic sampling technique uses a single historical buffer to store the history of events that
have occurred over the sampling interval. As events occur, they are recorded in the working buffer. At
the end of each sampling interval, the working buffer (which at that time holds the historical data for the
sampling interval just finished) is copied into the historical buffer, and the working buffer is cleared. It is
ready to hold new events from the sampling interval now starting.

Rolling-Window Periodic Sampling

In contrast to simple periodic sampling with its single historical buffer, the rolling-window periodic
sampling technique maintains a number of separate buffers. One buffer is marked as the current working
buffer, and the remainder of the buffers hold historical data. As each event occurs, the current working
buffer is updated to reflect it.

At a specified interval, the current working buffer and the accumulated data that it holds is moved into
the set of historical buffers, and a new working buffer is used. The specified interval is a function of the
number of historical buffers maintained.

The primary advantage of the rolling-window sampling technique is seen at the point where data is actually
exported. At this point, the data has a higher probability of reflecting a more recent sampling period than
the data exported using simple periodic sampling.

The data collected over each sample duration and exported using the rolling-window sampling technique
provides a more up-to-date representation of the activity during the most recently completed sample
duration than simple periodic sampling as shown in Figure 4.4, “Sample Duration Comparison”.

Figure 4.4. Sample Duration Comparison

0 10 20 30

Simple periodic sampling

Rolling window periodic sampling

0 10 20 30

Sample duration extends back to previous sample time; and
sample durations do not overlap

Sample duration extends over N previous sampling times;
and sample durations do overlap

Instrumenting Applications

109

The trace PMDA allows the length of the sample duration to be configured, as well as the number of
historical buffers that are maintained. The rolling-window approach is implemented in the trace PMDA
as a ring buffer (see Figure 4.3, “Trace PMDA Overview”).

 When the current working buffer is moved into the set of historical buffers, the least recent historical
buffer is cleared of data and becomes the new working buffer.

Rolling-Window Periodic Sampling Example

Consider the scenario where you want to know the rate of transactions over the last 10 seconds. You set
the sampling rate for the trace PMDA to 10 seconds and fetch the metric trace.transact.rate. So
if in the last 10 seconds, 8 transactions took place, the transaction rate would be 8/10 or 0.8 transactions
per second.

The trace PMDA does not actually do this. It instead does its calculations automatically at a subinterval
of the sampling interval. Reconsider the 10-second scenario. It has a calculation subinterval of 2 seconds
as shown in Figure 4.5, “Sampling Intervals”.

Figure 4.5. Sampling Intervals

4

2

1

2

1 1
1

2

3

4

5

6

0 4 8 122 14106
3.5 13.5

3

Interval used by agent

Requested interval

N
um

be
r

of
 tr

an
sa

ct
io

ns

Time (seconds) Request rate
at this time

0

If at 13.5 seconds, you request the transaction rate, you receive a value of 0.7 transactions per second. In
actual fact, the transaction rate was 0.8, but the trace PMDA did its calculations on the sampling interval
from 2 seconds to 12 seconds, and not from 3.5 seconds to 13.5 seconds. For efficiency, the trace PMDA
calculates the metrics on the last 10 seconds every 2 seconds. As a result, the PMDA is not driven each
time a fetch request is received to do a calculation.

Configuring the Trace PMDA

The trace PMDA is configurable primarily through command-line options. The list of command-line
options in Table 4.1, “Selected Command-Line Options” is not exhaustive, but it identifies those options
which are particularly relevant to tuning the manner in which performance data is collected.

Instrumenting Applications

110

Table 4.1. Selected Command-Line Options

Option Description

Access controls The trace PMDA offers host-based access control. This
control allows and disallows connections from instrumented
applications running on specified hosts or groups of hosts.
Limits to the number of connections allowed from individual
hosts can also be mandated.

Sample duration The interval over which metrics are to be maintained before
being discarded is called the sample duration.

Number of historical buffers The data maintained for the sample duration is held in a number
of internal buffers within the trace PMDA. These are referred
to as historical buffers. This number is configurable so that the
rolling window effect can be tuned within the sample duration.

Counter and observation metric units Since the data being exported by the
trace.observe.value and trace.counter.count
metrics are user-defined, the trace PMDA by default exports
these metrics with a type of “none.” A framework is provided
that allows the user to make the type more specific (for
example, bytes per second) and allows the exported values to be
plotted along with other performance metrics of similar units by
tools like pmchart.

Instance domain refresh The set of instances exported for each of the
trace metrics can be cleared through the storable
trace.control.reset metric.

Trace API
 The libpcp_trace Application Programming Interface (API) is called from C, C++, Fortran, and Java.
Each language has access to the complete set of functionality offered by libpcp_trace. In some cases,
the calling conventions differ slightly between languages. This section presents an overview of each of
the different tracing mechanisms offered by the API, as well as an explanation of their mappings to the
actual performance metrics exported by the trace PMDA.

Transactions

 Paired calls to the pmtracebegin and pmtraceend API functions result in transaction data being sent to
the trace PMDA with a measure of the time interval between the two calls. This interval is the transaction
service time. Using the pmtraceabort call causes data for that particular transaction to be discarded.
The trace PMDA exports transaction data through the following trace.transact metrics listed in
Table 4.2, “ trace.transact Metrics”:

Table 4.2. trace.transact Metrics

Metric Description

 trace.transact.ave_time The average service time per transaction type. This time
is calculated over the last sample duration.

 trace.transact.count The running count for each transaction type seen since
the trace PMDA started.

Instrumenting Applications

111

Metric Description

 trace.transact.max_time The maximum service time per transaction type within
the last sample duration.

 trace.transact.min_time The minimum service time per transaction type within
the last sample duration.

 trace.transact.rate

The average rate at which each transaction type is
completed. The rate is calculated over the last sample
duration.

 trace.transact.total_time The cumulative time spent processing each transaction
since the trace PMDA started running.

Point Tracing

 Point tracing allows the application programmer to export metrics related to salient events. The
pmtracepoint function is most useful when start and end points are not well defined. For example, this
function is useful when the code branches in such a way that a transaction cannot be clearly identified,
or when processing does not follow a transactional model, or when the desired instrumentation is akin
to event rates rather than event service times. This data is exported through the trace.point metrics
listed in Table 4.3, “trace.point Metrics”:

Table 4.3. trace.point Metrics

Metric Description

trace.point.count Running count of point observations for each tag seen since the
trace PMDA started.

trace.point.rate The average rate at which observation points occur for each tag
within the last sample duration.

Observations and Counters

 The pmtraceobs and pmtracecount functions have similar semantics to pmtracepoint, but also allow
an arbitrary numeric value to be passed to the trace PMDA. The most recent value for each tag is then
immediately available from the PMDA. Observation data is exported through the trace.observe
metrics listed in Table 4.4, “ trace.observe Metrics”:

Table 4.4. trace.observe Metrics

Metric Description

trace.observe.count Running count of observations seen since the trace PMDA
started.

trace.observe.rate The average rate at which observations for each tag occur. This
rate is calculated over the last sample duration.

trace.observe.value The numeric value associated with the observation last seen by
the trace PMDA.

trace.counter Counter data is exported through the trace.counter
metrics. The only difference between trace.counter
and trace.observe metrics is that the numeric value of
trace.counter must be a monotonic increasing count.

Instrumenting Applications

112

Configuring the Trace Library
 The trace library is configurable through the use of environment variables listed in Table 4.5,
“Environment Variables” as well as through the state flags listed in Table 4.6, “State Flags”. Both provide
diagnostic output and enable or disable the configurable functionality within the library.

Table 4.5. Environment Variables

Name Description

PCP_TRACE_HOST The name of the host where the trace PMDA is running.

PCP_TRACE_PORT TCP/IP port number on which the trace PMDA is accepting
client connections.

PCP_TRACE_TIMEOUT The number of seconds to wait until assuming that the initial
connection is not going to be made, and timeout will occur. The
default is three seconds.

PCP_TRACE_REQTIMEOUT The number of seconds to allow before timing out on awaiting
acknowledgment from the trace PMDA after trace data has been
sent to it. This variable has no effect in the asynchronous trace
protocol (refer to Table 4.6, “State Flags”).

PCP_TRACE_RECONNECT A list of values which represents the backoff approach that
the libpcp_trace library routines take when attempting to
reconnect to the trace PMDA after a connection has been lost.
The list of values should be a positive number of seconds for
the application to delay before making the next reconnection
attempt. When the final value in the list is reached, that value is
used for all subsequent reconnection attempts.

 The Table 4.6, “State Flags” are used to customize the operation of the libpcp_trace routines. These
are registered through the pmtracestate call, and they can be set either individually or together.

Table 4.6. State Flags

Flag Description

PMTRACE_STATE_NONE The default. No state flags have been set, the fault-
tolerant, synchronous protocol is used for communicating
with the trace PMDA, and no diagnostic messages are
displayed by the libpcp_trace routines.

PMTRACE_STATE_API High-level diagnostics. This flag simply displays entry
into each of the API routines.

PMTRACE_STATE_COMMS Diagnostic messages related to establishing and
maintaining the communication channel between
application and PMDA.

PMTRACE_STATE_PDU The low-level details of the trace protocol data units
(PDU) is displayed as each PDU is transmitted or
received.

PMTRACE_STATE_PDUBUF The full contents of the PDU buffers are dumped as PDUs
are transmitted and received.

PMTRACE_STATE_NOAGENT Interprocess communication control. If this flag is
set, it causes interprocess communication between the
instrumented application and the trace PMDA to be

Instrumenting Applications

113

Flag Description

skipped. This flag is a debugging aid for applications
using libpcp_trace.

PMTRACE_STATE_ASYNC Asynchronous trace protocol. This flag enables the
asynchronous trace protocol so that the application does
not block awaiting acknowledgment PDUs from the trace
PMDA. In order for the flag to be effective, it must be set
before using the other libpcp_trace entry points.

114

Appendix A. Acronyms
Table A.1, “Performance Co-Pilot Acronyms and Their Meanings” provides a glossary of the acronyms
used in the Performance Co-Pilot (PCP) documentation, help cards, man pages, and user interface.

Table A.1. Performance Co-Pilot Acronyms and Their Meanings

Acronym Meaning

API Application Programming Interface

DBMS Database Management System

 DNS Domain Name Service

 DSO Dynamic Shared Object

I/O Input/Output

IPC Interprocess Communication

 PCP Performance Co-Pilot

 PDU Protocol data unit

 PMAPI Performance Metrics Application Programming Interface

 PMCD Performance Metrics Collection Daemon

 PMDA Performance Metrics Domain Agent

 PMID Performance Metric Identifier

 PMNS Performance Metrics Name Space

 TCP/IP Transmission Control Protocol/Internet Protocol

115

Index
__pmID_int structure Data Structures
__pmInDom_int structure Data Structures
access controls Configuring the Trace PMDA
acronyms Acronyms
ancillary support services PMAPI Ancillary Support
Services
Application Programming Interface PMAPI--The
Performance Metrics API Memory Mapped Values API
Trace API Application Interaction Trace API
application developersInstrumenting Applications
application programs Application and Agent
Development
applications

compiling Compiling and Linking PMAPI
Applications
instrumentation Application and PCP Relationship
interaction Application Interaction

architecture PCP Architecture PMDA Architecture
archive logs

performance data PMAPI--The Performance Metrics
API Current PMAPI Context
performance management Application and PCP
Relationship
pmGetArchiveEnd function pmGetArchiveEnd
Function
pmGetInDomArchive function
pmGetInDomArchive Function
retrospective sources Retrospective Sources of
Performance Metrics
time control services PMAPI Time Control Services

archive-specific services pmGetArchiveLabel Function
Cluster PMDA Distributed Collection
arrays

instance description Data Structures
N dimensional data N Dimensional Data
performance metrics Performance Metrics Values
Variable Length Argument and Results Lists

asynchronous trace protocol Configuring the Trace
Library Configuring the Trace Library
audience Programming Performance Co-Pilot
automated alarms Application and PCP Relationship
caching PMDA Caching PMDA Latency and Threads of
Control
chkhelp tool Application and Agent Development
Cisco PMDA Distributed Collection Caching PMDA
client development Client Development and PMAPI
clusters Name Space
collection time Current PMAPI Context pmNewContext
Function pmWhichContext Function
collection tools PCP Architecture
collector hosts Distributed Collection

COLOR_INDOM Data Structures
compiling and linking Compiling and Linking PMAPI
Applications
component software Overview of Component Software
computation state Instrumenting Applications
configuration Configuring the Trace Library Configuring
PCP Tools
context services PMAPI Context Services
control threads Latency and Threads of Control
counter semantics Semantics
customization Programming Performance Co-Pilot
Instrumenting Applications
daemon process method Daemon Process Method
data export Application and PCP Relationship
data structures Data Structures Data Structures Data
Structures
dbpmda man page Implementing a PMDA Overview
dbpmda Debug Utility
dbx man page Overview
debugging and testing Testing and Debugging a PMDA
Configuring the Trace Library
debugging flags (see flags)
delays Latency and Threads of Control
design requirements Implementing a PMDA
diagnostic output Configuring the Trace Library
dimensionality and scale Performance Metric
Descriptions
discrete semantics Semantics
distributed performance management

data transportation Application and PCP Relationship
metrics collection Distributed Collection

dlopen man page In-Process (DSO) Method DSO PMDA
DNS Acronyms
domains

definition Overview
fields Name Space
numbers Domains

dometric function pmTraversePMNS Function
DSO Acronyms

architecture PMDA Architecture
disadvantages Daemon PMDA
implementation DSO PMDA
interface PMDA Interface
PMDA building In-Process (DSO) Method
PMDA initialization Common Initialization

dynamic shared object (see DSO)
embedded calls Instrumenting Applications
environment variables Configuring the Trace Library
error handling Handling PMAPI Errors
examples

alarm tools Implementing a PMDA
Install script Installing a PMDA
MMV PMDA Instrumenting Applications

Index

116

programming issues PMAPI Programming Issues and
Examples
Remove script Removing a PMDA
rolling-window sampling Rolling-Window Periodic
Sampling Example
simple and trivial PMDAs Domains, Metrics,
Instances and Labels
time control functions PMAPI Time Control Services
trace PMDA Instrumenting Applications

execv system call Daemon PMDA
exporting data Extracting the Information
flags

debugging Debugging Information
state Configuring the Trace Library

fork system call Daemon PMDA
glossary Acronyms
handle context pmReconnectContext Function
help text

creation Installing a PMDA
initialization Common Initialization
location Installing a PMDA
PDU_TEXT_REQ Overview
pmLookupInDomText function
pmLookupInDomText Function
pmLookupText function Management of Evolution
within a PMDA pmLookupText Function
structure specification Implementing a PMDA
terse and extended descriptions PMDA Help Text

historical buffers Simple Periodic Sampling Rolling-
Window Periodic Sampling Configuring the Trace
PMDA
identification tags Application Interaction
implementation Implementing a PMDA
indom instance domain pmLookupInDomText Function
pmAddProfile Function pmGetInDomArchive
Function
information extraction Extracting the Information
initialization Initializing New Metrics
instance domain refresh Configuring the Trace PMDA
instance domain services pmGetInDom Function
instantaneous semantics Semantics
instlist argument pmGetInDom Function pmAddProfile
Function
instrumentation Performance Instrumentation and
Sampling Performance Instrumentation and Tracing
Application and PCP Relationship
integrating a PMDA Integration of a PMDA
internal instance identifier Performance Metrics Values
interpolated metrics pmSetMode Function
interprocess communication (see IPC)

PMTRACE_STATE_NOAGENT flag Configuring
the Trace Library

IPC
DSO In-Process (DSO) Method

PMDA Implementing a PMDA
trace API Application Interaction

item numbers Name Space
iterative processing Iterative Processing of Values
latency Latency and Threads of Control
leaf node pmTraversePMNS Function
libpcp_mmv library

Application Programming Interface Memory Mapped
Values API
instrumenting applications Instrumenting
Applications

libpcp_trace library
Application Programming Interface Trace API
entry points Configuring the Trace Library
functions Configuring the Trace Library
instrumenting applications Instrumenting
Applications

library reentrancy Library Reentrancy and Threaded
Applications
metric description services pmLookupDesc Function
metrics

API Naming and Identifying Performance Metrics
definition Overview Metrics
name and value Symbolic Association between a
Metric's Name and Value

metrics and instances Overview
metrics description services pmLookupDesc Function
metrics services pmFetch Function
mmv_lookup_value_desc function Getting a Handle on
Mapped Values
mmv_stats_init function Starting and Stopping
Instrumentation
mmv_stats_stop function Starting and Stopping
Instrumentation
mmv_stats_inc function Updating Mapped Values
mmv_stats_interval_start function Elapsed Time
Measures
mmv_stats_interval_end function Elapsed Time
Measures
monitoring tools PCP Architecture
multidimensional arrays N Dimensional Data
multiple threads Library Reentrancy and Threaded
Applications
MMV PMDA

description Instrumenting Applications
design MMV PMDA Design

name space Name Space Name Space
new metrics Management of Evolution within a PMDA
Initializing New Metrics
newhelp man page PMDA Help Text
newhelp tool Application and Agent Development
NOW_INDOM Data Structures
observation metric units Configuring the Trace PMDA
parallelism Instrumenting Applications

Index

117

PCP
acronym Acronyms
description Programming Performance Co-Pilot
tool summaries Application and Agent Development

PCP_TRACE_HOST variable Configuring the Trace
Library
PCP_TRACE_PORT variable Configuring the Trace
Library
PCP_TRACE_RECONNECT variable Configuring the
Trace Library
PCP_TRACE_REQTIMEOUT variable Configuring the
Trace Library
PCP_TRACE_TIMEOUT variable Configuring the
Trace Library
PDU Overview Application Interaction Configuring the
Trace Library Acronyms
PDU_ATTR Overview
PDU_DESC_REQ Overview
PDU_FETCH Overview Simple PMDA
PDU_INSTANCE_REQ Overview
PDU_LABEL_REQ Overview
PDU_PMNS_CHILD Overview
PDU_PMNS_NAMES Overview
PDU_PMNS_TRAVERSE Overview
PDU_PMNS_IDS Overview
PDU_PROFILE Overview
PDU_RESULT Overview Simple PMDA
PDU_TEXT_REQ Overview
performance instrumentation Programming Performance
Co-Pilot Performance Instrumentation and Sampling
Performance Instrumentation and Tracing
Performance Metric Identifier (see PMID)
performance metrics (see metrics)
Performance Metrics Application Programming Interface
(see PMAPI)
Performance Metrics Collection Daemon (see PMCD)
Performance Metrics Domain Agent (see PMDA)
Performance Metrics Name Space (see PMNS)
periodic sampling Simple Periodic Sampling
pipe Daemon PMDA Daemon PMDA
PM_CONTEXT_ARCHIVE type pmNewContext
Function
PM_CONTEXT_HOST type pmNewContext Function
PM_ERR_CONV error code Management of Evolution
within a PMDA pmExtractValue Function
PM_ERR_INST error code simple_store in the
Simple PMDA
PM_ERR_PMID error code Management of Evolution
within a PMDA simple_store in the Simple PMDA
PM_ERR_SIGN error code pmExtractValue Function
PM_ERR_TIMEOUT error code pmFetch Function
PM_ERR_TRUNC error code pmExtractValue
Function

PM_IN_NULL instance identifier Performance Metric
Instances
PM_INDOM_NULL instance domain

data structures Data Structures Data Structures
description Performance Metric Instances
pmAddProfile function pmAddProfile Function
pmDelProfile function pmDelProfile Function

PM_SEM_COUNTER semantic type Semantics
PM_SEM_DISCRETE semantic type Semantics
PM_SEM_INSTANT semantic type Data Structures
Semantics
PM_TYPE_AGGREGATE type Performance Metric
Descriptions
PM_TYPE_NOSUPPORT value Management of
Evolution within a PMDA Performance Metric
Descriptions
PM_TYPE_STRING type Performance Metric
Descriptions pmExtractValue Function
PM_TYPE_EVENT type Performance Metric
Descriptions
PM_VAL_INSITU value Performance Metrics Values
pmAddProfile function Overview PMAPI Context
Services pmAddProfile Function
PMAPI Application and Agent Development
Performance Metric Instances

(see also metrics)
acronym Acronyms
ancillary support services PMAPI Ancillary Support
Services
application compiling Compiling and Linking PMAPI
Applications
archive-specific services pmGetArchiveLabel
Function
client development Client Development and PMAPI
context services PMAPI Context Services
current context Current PMAPI Context
description PMAPI--The Performance Metrics API
description services pmLookupDesc Function
error handling PMAPI Error Handling Handling
PMAPI Errors
identifying metrics Naming and Identifying
Performance Metrics
initializing new metrics Initializing New Metrics
instance domain services pmGetInDom Function
introduction Programming Performance Co-Pilot
iterative processing Iterative Processing of Values
man page Distributed Collection
metrics services pmFetch Function
Name Space services pmGetChildren Function
program evolution Accommodating Program
Evolution
programming issues PMAPI Programming Issues and
Examples PMAPI Programming Issues and Examples

Index

118

programming style PMAPI Programming Style and
Interaction
record-mode services pmRecordAddHost Function
time control services PMAPI Time Control Services
timezone services pmNewContextZone Function
variable length arguments Variable Length Argument
and Results Lists

pmAtomStr function Management of Evolution within a
PMDA pmAtomStr Function
pmAtomValue structure Simple PMDA
PMCD

acronym Acronyms
distributed collection Distributed Collection
overview PCP Architecture
pmReconnectContext function pmReconnectContext
Function

PMCD_RECONNECT_TIMEOUT variable
pmReconnectContext Function
PMCD_REQUEST_TIMOUT variable pmFetch
Function
pmchart command PCP Architecture Configuring the
Trace PMDA
pmclient tool Application and Agent Development

brief description Application and Agent Development
pmConvScale function Management of Evolution within
a PMDA pmConvScale Function
PMDA

acronym Acronyms
architecture PMDA Architecture
checklist Implementing a PMDA
development PMDA Development
evolution Management of Evolution within a PMDA
help text PMDA Help Text
initialization Initializing a PMDA
interface PMDA Interface
introduction Programming Performance Co-Pilot
man page Distributed Collection
removal Removing a PMDA
structures PMDA Structures
trace Instrumenting Applications
writing Writing a PMDA

pmda library Application and Agent Development (see
PMDA)
mmv library Application and Agent Development (see
MMV)
PMDA_PMID macro Data Structures
pmdaAttribute callback Overview
pmdaChildren callback Overview
pmdacisco man page Caching PMDA
pmdaConnect man page PMDA Structures Daemon
Initialization
pmdaDaemon man page PMDA Structures Daemon
Initialization
pmdaDesc callback Overview

pmdaDSO man page PMDA Structures
pmdaExt structure Overview PMDA Structures
pmdaFetch callback Overview Trivial PMDA
pmdaGetOptions man page PMDA Structures Daemon
Initialization Daemon Initialization
pmdaIndom structure Data Structures
pmdaInit man page Data Structures PMDA Structures
Common Initialization Common Initialization
pmdaInstance callback Overview
pmdaInstid structure Data Structures
pmdaInterface structure PMDA Structures Overview
pmdaLabel callback Overview
pmdaMain man page Daemon Initialization
pmdaMetric structure Data Structures
pmdaName callback Overview
pmdaOpenLog man page Daemon Initialization
pmdaPMID callback Overview
pmdaProfile callback Overview
pmdaStore callback Overview simple_store in the
Simple PMDA
pmdaText callback Overview
pmdatrace man page Performance Instrumentation and
Tracing Performance Instrumentation and Tracing
pmdbg man page Overview Debugging Information
pmDelProfile function PMAPI Context Services
pmDelProfile Function
pmDesc structure Data Structures Management of
Evolution within a PMDA Performance Metric
Descriptions Performance Metric Descriptions
pmDestroyContext function pmDestroyContext
Function
pmDupContext function PMAPI Context Services
pmDupContext Function
pmErrStr function pmErrStr Function
pmExtractValue function Management of Evolution
within a PMDA pmExtractValue Function
pmConvScale Function
pmFetch function Performance Metrics Values
Performance Metrics Values Variable Length
Argument and Results Lists PMAPI Context
Services pmNewContext Function pmSetMode
Function pmFetch Function pmFetch Function
pmFreeResult Function pmFetchArchive Function
pmPrintValue Function pmSortInstances Function
Symbolic Association between a Metric's Name and
Value
pmFetch man page Overview Management of Evolution
within a PMDA
pmFetchArchive function PMAPI Context Services
pmSetMode Function pmFetchArchive Function
pmflush function pmflush Function
pmFreeLabelSet function Variable Length Argument and
Results Lists

Index

119

pmFreeResult function Variable Length Argument and
Results Lists pmFetch Function pmFreeResult Function
pmgenmap tool Application and Agent Development
pmGetArchiveEnd function PMAPI Context Services
pmGetArchiveEnd Function
pmGetArchiveLabel function PMAPI Context Services
pmGetArchiveLabel Function
pmGetChildren function Overview Variable Length
Argument and Results Lists pmGetChildren Function
pmGetChildrenStatus Function PMAPI Context
Services
pmGetChildrenStatus function PMAPI Context Services
pmGetContextHostName function PMAPI Context
Services
pmGetInDom function Overview Variable Length
Argument and Results Lists pmGetInDom Function
PMAPI Context Services pmSetMode Function
pmGetInDomArchive Function
pmGetInDomArchive function PMAPI Context Services
pmGetInDomArchive Function
pmGetPMNSLocation function pmGetPMNSLocation
Function PMAPI Context Services
PMID

acronym Acronyms
introduction Name Space

pmIDStr function pmIDStr Function
pmie command Implementing a PMDA Configuring PCP
Tools
pmieconf command Implementing a PMDA Configuring
PCP Tools
pmInDomStr function pmInDomStr Function
pmLabel structure Data Structures
pmLabelSet structure Data Structures
pmLoadNameSpace function pmLoadNameSpace
Function
pmlogconf command Configuring PCP Tools
pmlogger command Implementing a PMDA Configuring
PCP Tools
pmLookupDesc function Overview Data Structures
Management of Evolution within a PMDA
pmLookupDesc Function PMAPI Context Services
pmSetMode Function pmExtractValue Function
pmConvScale Function
pmLookupInDom function pmLookupInDom Function
PMAPI Context Services pmSetMode Function
pmLookupInDomArchive function PMAPI Context
Services pmLookupInDomArchive Function
pmLookupInDomText function pmLookupInDomText
Function PMAPI Context Services
pmLookupLabels function Overview Variable Length
Argument and Results Lists pmLookupLabels Function
metric labels pmLookupLabels Function PMAPI
Context Services

pmLookupName function Overview pmLookupName
Function PMAPI Context Services Symbolic Association
between a Metric's Name and Value
pmLookupText function Overview Management of
Evolution within a PMDA Variable Length Argument and
Results Lists pmLookupText Function PMAPI Context
Services
pmNameAll function pmNameAll Function
pmNameID function Variable Length Argument and
Results Lists pmNameID Function PMAPI Context
Services
pmNameInDom function Variable Length Argument and
Results Lists pmNameInDom Function PMAPI Context
Services pmSetMode Function
pmNameInDomArchive function PMAPI Context
Services pmNameInDomArchive Function
pmNewContext function pmNewContext Function
pmNewContextZone function pmNewContextZone
Function
pmNewZone function pmNewZone Function
PMNS

acronym Acronyms
distributed Distributed PMNS

pmns man page Name Space
pmNumberStr function pmNumberStr Function
pmParseInterval function pmParseInterval Function
pmParseMetricSpec function pmParseMetricSpec
Function
pmprintf function pmprintf Function
pmPrintValue function Management of Evolution within
a PMDA pmPrintValue Function
pmReconnectContext function pmReconnectContext
Function
pmRecordAddHost function pmRecordAddHost
Function
pmRecordControl function pmRecordControl Function
pmRecordSetup function pmRecordSetup Function
pmSetMode function PMAPI Context Services
pmSetMode Function pmGetArchiveEnd Function
pmSortInstances function pmSortInstances Function
pmstore function Management of Evolution within a
PMDA Debugging Information Performance Metrics
Values PMAPI Context Services pmStore Function
pmStore Function
PMTRACE_STATE_API flag Configuring the Trace
Library
PMTRACE_STATE_ASYNC flag Configuring the
Trace Library
PMTRACE_STATE_COMMS flag Configuring the
Trace Library
PMTRACE_STATE_NOAGENT flag Configuring the
Trace Library Configuring the Trace Library
PMTRACE_STATE_NONE flag Configuring the Trace
Library

Index

120

PMTRACE_STATE_PDU flag Configuring the Trace
Library
PMTRACE_STATE_PDUBUF flag Configuring the
Trace Library
pmtraceabort function Transactions
pmtracebegin function Transactions
pmtracend function Transactions
pmtraceobs function Observations and Counters
pmtracepoint function Point Tracing Observations and
Counters
pmtracestate call Configuring the Trace Library
pmTraversePMNS function Overview
pmTraversePMNS Function PMAPI Context Services
__pmParseHostAttrsSpec function Overview
pmTypeStr function Management of Evolution within a
PMDA pmTypeStr Function
pmUnitsStr function pmUnitsStr Function
pmUnloadNameSpace function pmUnloadNameSpace
Function
pmUnpackEventRecords function Event Monitor
Considerations
pmUseContext function pmNewContext Function
pmUseContext Function
pmUseZone function pmUseZone Function
pmWhichContext function pmWhichContext Function
pmWhichZone function pmWhichZone Function
point tracing Point Tracing
program evolution Accommodating Program Evolution
programming components Programming Performance
Co-Pilot
protocol data units (see PDU)
pthreads man page Latency and Threads of Control
record-mode services pmRecordAddHost Function
removal script Removing a PMDA
restarting pmcd Installing a PMDA
retrospective analysis Retrospective Sources of
Performance Metrics
ring buffers Rolling-Window Periodic Sampling
rolling-window sampling Sampling Techniques Rolling-
Window Periodic Sampling
sample duration Rolling-Window Periodic Sampling
Configuring the Trace PMDA
sampling techniques Sampling Techniques
scale and dimensionality Performance Metric
Descriptions
semantic types Semantics
sequential log files Implementing a PMDA
service time Instrumenting Applications
simple periodic sampling Simple Periodic Sampling
simple PMDA

2 branches, 4 metrics Name Space
as daemon Daemon PMDA
DSO DSO PMDA
initialization Simple PMDA

pmdaFetch callback Simple PMDA
simple_init function DSO PMDA Simple PMDA Simple
PMDA
simple_store function Debugging Information
simple.color metric Simple PMDA
simple.now metric Simple PMDA
simple.store metric simple_store in the Simple
PMDA
simple.time metric Simple PMDA
snapshot files Implementing a PMDA
software Overview of Component Software
specific instance domain PMAPI Context Services
state flags Configuring the Trace Library Configuring the
Trace Library
storage of metrics Metrics
symbolic association Symbolic Association between a
Metric's Name and Value
synchronous protocol Configuring the Trace Library
target domain Implementing a PMDA Metrics Extracting
the Information
TCP/IP Configuring the Trace Library Acronyms
testing and debugging Testing and Debugging a PMDA
threaded applications Library Reentrancy and Threaded
Applications
time control services PMAPI Time Control Services
timezone services pmNewContextZone Function
tool configuration Configuring PCP Tools
trace facilities Programming Performance Co-Pilot
trace PMDA

command-line options Configuring the Trace PMDA
description Instrumenting Applications
design Trace PMDA Design

trace.control.reset metric Configuring the Trace PMDA
trace.observe metrics Observations and Counters
trace.observe.rate metric Sampling Techniques
trace.point.count metric Point Tracing
trace.point.rate metric Point Tracing Sampling
Techniques
trace.transact.ave_time metric Sampling Techniques
Transactions
trace.transact.count metric Transactions
trace.transact.max_time metric Sampling Techniques
Transactions
trace.transact.min_time metric Sampling Techniques
Transactions
trace.transact.rate metric Sampling Techniques
Transactions
trace.transact.total_time metric Transactions
transactions Transactions
trivial PMDA

callbacks Trivial PMDA
initialization Trivial PMDA
singular metric Data Structures

trivial_init function Trivial PMDA Trivial PMDA

Index

121

two or three dimensional arrays N Dimensional Data
type field Management of Evolution within a PMDA
unavailable metrics support Management of Evolution
within a PMDA
working buffers Application Interaction Rolling-Window
Periodic Sampling

	Performance Co-Pilot™ Programmer's Guide
	Table of Contents
	About This Guide
	What This Guide Contains
	Audience for This Guide
	Related Resources
	Man Pages
	Web Site
	Conventions
	Reader Comments

	Chapter 1. Programming Performance Co-Pilot
	PCP Architecture
	Distributed Collection
	Name Space
	Distributed PMNS
	Retrospective Sources of Performance Metrics

	Overview of Component Software
	Application and Agent Development

	PMDA Development
	Overview
	Building a PMDA
	In-Process (DSO) Method
	Daemon Process Method

	Client Development and PMAPI
	Library Reentrancy and Threaded Applications

	Chapter 2. Writing a PMDA
	Implementing a PMDA
	PMDA Architecture
	Overview
	DSO PMDA
	Daemon PMDA
	Caching PMDA

	Domains, Metrics, Instances and Labels
	Overview
	Domains
	Metrics
	Data Structures
	Semantics

	Instances
	Instance Identification
	N Dimensional Data
	Data Structures

	Labels
	Label Hierarchy
	Data Structures

	Other Issues
	Extracting the Information
	Latency and Threads of Control
	Name Space
	PMDA Help Text
	Management of Evolution within a PMDA

	PMDA Interface
	Overview
	Trivial PMDA
	Simple PMDA
	simple_store in the Simple PMDA
	Return Codes for pmdaFetch Callbacks

	PMDA Structures

	Initializing a PMDA
	Overview
	Common Initialization
	Trivial PMDA
	Simple PMDA

	Daemon Initialization

	Testing and Debugging a PMDA
	Overview
	Debugging Information
	dbpmda Debug Utility

	Integration of a PMDA
	Installing a PMDA
	Removing a PMDA
	Configuring PCP Tools

	Chapter 3. PMAPI--The Performance Metrics API
	Naming and Identifying Performance Metrics
	Performance Metric Instances
	Current PMAPI Context
	Performance Metric Descriptions
	Performance Metrics Values
	Performance Event Metrics
	Event Monitor Considerations
	Event Collector Considerations

	PMAPI Programming Style and Interaction
	Variable Length Argument and Results Lists
	Python Specific Issues
	PMAPI Error Handling

	PMAPI Procedural Interface
	PMAPI Name Space Services
	pmGetChildren Function
	pmGetChildrenStatus Function
	pmGetPMNSLocation Function
	pmLoadNameSpace Function
	pmLookupName Function
	pmNameAll Function
	pmNameID Function
	pmTraversePMNS Function
	pmUnloadNameSpace Function

	PMAPI Metrics Description Services
	pmLookupDesc Function
	pmLookupInDomText Function
	pmLookupText Function
	pmLookupLabels Function

	PMAPI Instance Domain Services
	pmGetInDom Function
	pmLookupInDom Function
	pmNameInDom Function

	PMAPI Context Services
	pmNewContext Function
	pmDestroyContext Function
	pmDupContext Function
	pmUseContext Function
	pmWhichContext Function
	pmAddProfile Function
	pmDelProfile Function
	pmSetMode Function
	pmReconnectContext Function
	pmGetContextHostName Function

	PMAPI Timezone Services
	pmNewContextZone Function
	pmNewZone Function
	pmUseZone Function
	pmWhichZone Function

	PMAPI Metrics Services
	pmFetch Function
	pmFreeResult Function
	pmStore Function

	PMAPI Fetchgroup Services
	Fetchgroup setup
	Fetchgroup operation
	Fetchgroup shutdown

	PMAPI Record-Mode Services
	pmRecordAddHost Function
	pmRecordControl Function
	pmRecordSetup Function

	PMAPI Archive-Specific Services
	pmGetArchiveLabel Function
	pmGetArchiveEnd Function
	pmGetInDomArchive Function
	pmLookupInDomArchive Function
	pmNameInDomArchive Function
	pmFetchArchive Function

	PMAPI Time Control Services
	PMAPI Ancillary Support Services
	pmGetConfig Function
	pmErrStr Function
	pmExtractValue Function
	pmConvScale Function
	pmUnitsStr Function
	pmIDStr Function
	pmInDomStr Function
	pmTypeStr Function
	pmAtomStr Function
	pmNumberStr Function
	pmPrintValue Function
	pmflush Function
	pmprintf Function
	pmSortInstances Function
	pmParseInterval Function
	pmParseMetricSpec Function

	PMAPI Programming Issues and Examples
	Symbolic Association between a Metric's Name and Value
	Initializing New Metrics
	Iterative Processing of Values
	Accommodating Program Evolution
	Handling PMAPI Errors
	Compiling and Linking PMAPI Applications

	Chapter 4. Instrumenting Applications
	Application and Performance Co-Pilot Relationship
	Performance Instrumentation and Sampling
	MMV PMDA Design
	Memory Mapped Values API
	Starting and Stopping Instrumentation
	Getting a Handle on Mapped Values
	Updating Mapped Values
	Elapsed Time Measures

	Performance Instrumentation and Tracing
	Trace PMDA Design
	Application Interaction
	Sampling Techniques
	Simple Periodic Sampling
	Rolling-Window Periodic Sampling
	Rolling-Window Periodic Sampling Example

	Configuring the Trace PMDA

	Trace API
	Transactions
	Point Tracing
	Observations and Counters
	Configuring the Trace Library

	Appendix A. Acronyms
	Index

