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1 Introduction

The earth R package [19, 22] builds regression models using the techniques in Fried-
man’s papers “Multivariate Adaptive Regression Splines” [7] and “Fast MARS” [8]. The
package can be downloaded from https://CRAN.R-project.org/package=earth.

The term “MARS” is trademarked and thus not used in the name of the package. A
backronym for “earth” is “Enhanced Adaptive Regression Through Hinges”.

This document is a set of notes that accompanies the package. It can also be downloaded
from http://www.milbo.org/doc/earth-notes.pdf.

The other vignette that comes with the package is “Variance models in earth” [17],
which describes how to build variance models and generate prediction intervals for earth
models. It can be downloaded from http://www.milbo.org/doc/earth-varmod.pdf.

Most users will find it unnecessary to read this entire document. Just read the parts
you need and skim the rest. Much of this text was originally written in response to
email from users.
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2 Overview

Earth has numerous arguments, but many users will find that the following are all they
need:

formula, data Familiar from lm.

x, y Alternative to the formula interface.

degree The maximum degree of interaction. Default is 1, use 2 for first-
order interactions of the hinge functions.

nk The maximum number of MARS terms. The default is determined
semi-automatically from the number of predictors in x, but may
need adjusting.

trace Trace operation.

It’s usually best not to subvert the standard MARS algorithm by toying with tuning
parameters such as thresh, penalty, and endspan. Remember that we aren’t seeking
a model that best fits the training data, but rather a model that best fits the underlying
distribution from which the data is drawn. Knowledgeable users may ignore this advice.

2.1 References

The Wikipedia article [24] is recommended for an elementary introduction to MARS
http://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines.

The primary references are the Friedman MARS papers [7, 8]. Readers may find the
MARS section in Hastie, Tibshirani, and Friedman [12] a more accessible introduction.

Faraway [5] takes a hands-on approach, using the ozone data to compare mda::mars

with other techniques. (If you use Faraway’s examples with earth instead of mars, use
$bx instead of $x, and check out the book’s errata.)

Friedman and Silverman [9] is recommended background reading for the MARS paper.

Earth’s backward pass uses code from the leaps package [16] which is based on tech-
niques in Miller [20].

If you use earth in a published document, please do the right thing and cite it
(FAQ 13.2).

2.2 Other implementations

Given the same data, earth models are similar to but not identical to models built by
other MARS implementations. The differences stem from the forward pass where small
implementation differences (or perturbations of the input data) can cause somewhat
different selection of terms and knots (although similar GRSq’s). The backward passes
give identical or near identical results, given the same forward pass results.
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The source code of earth is derived from the function mars in the mda package written
by Trevor Hastie and Robert Tibshirani [13]. See also the function mars.to.earth (in
the earth package).

The term “MARS” is trademarked and licensed exclusively to Salford Systems http://
www.salfordsystems.com. Their implementation uses an engine written by Friedman.
It has a graphical user interface and includes some features not in earth.

StatSoft have an implementation which they call “MARSplines” http://www.statsoft.
com/textbook/stmars.html.

SAS have an implementation which they call “ADAPTIVEREG” https://support.

sas.com/rnd/app/stat/procedures/adaptivereg.html.

Most other implementations appear to be suitable only for smaller problems because
they don’t use Friedman’s MARS fast update algorithm (equation 52 in the MARS
paper).

2.3 Limitations

The following aspects of MARS are mentioned in Friedman’s papers but not imple-
mented in earth:

(i) Piecewise cubic models (to smooth out sharpness at the hinges).
(ii) Model slicing (plotmo goes part way).
(iii) Handling missing values.
(iv) Automatic grouping of categorical predictors into subsets.
(v) The h parameter of Fast MARS.

2.4 The forward pass

Understanding the details of the forward and backward passes will help you understand
earth’s return value and the admittedly large number of arguments. Figure 1 is an
overview.

The result of the forward pass is the MARS basis matrix bx and the set of terms defined
by dirs and cuts (these are all fields in earth’s return value, but the bx returned by
the forward pass includes all terms before trimming back to selected.terms).

The bx matrix has a row for every observation (i.e. for every row in x). It has a column
for each basis function (also referred to as a MARS term). An example bx:

(Intercept) h(x1-58) h(x2-89) h(89-x2) h(56-x3)*h(x1-58) ...

[1,] 1 3.2 0 56 0 ...

[2,] 1 8.1 0 55 0 ...

[3,] 1 3.7 0 54 0 ...

....

See Chapter 3 for a discussion of the termination conditions for the forward pass. Set
trace=2 or greater to trace the forward pass.
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Figure 1: Overview of earth’s internals

2.5 The backward pass

The backward pass1 is handed the set of terms bx generated by the forward pass. This
full set of terms typically overfits the data. The job of the backward pass is find the
subset of these terms that gives the best GCV (FAQ 13.6).

The backward pass applies a stepwise term deletion procedure: at each step it deletes
a bx term to generate a smaller submodel. It starts with the full model returned by the
forward pass, then at each step it deletes the term that gives the submodel with the
lowest RSS (residual sum-of-squares). It saves the RSS, GCV, and set of terms for each
such submodel in the vectors rss.per.subset, gcv.per.subset, and prune.terms

(these fields are returned by earth). This process continues until only one term remains
(the intercept term). The backward pass then selects the final model—the submodel
with the best GCV. It updates bx to retain only the terms for this model.

After the backward pass, earth runs lm.fit to determine the fitted.values, residuals,
and coefficients, by regressing the response y on the new bx. This is an ordinary
least-squares regression of the response y on bx (Figure 1). If y has multiple columns
then lm.fit is called for each column.

If a glm argument is passed to earth (Chapter 4), earth runs glm on (each column of)
y in addition to the above call to lm.fit.

Set trace=3 or greater to trace the backward pass.

1More correctly called the pruning pass, because backward stepping is only one of the pruning
options available in earth. See earth’s pmethod argument; "backward" is the default.

7



2.6 Execution time

For a given set of input data, the following can increase the speed of the forward pass:

(i) decreasing degree (because there are fewer combinations of terms to consider),

(ii) decreasing nk (because there are fewer forward pass terms),

(iii) increasing minspan (because fewer knots need to be considered),

(iv) decreasing fast.k (because there are fewer potential parents to consider at each
forward step),

(v) increasing thresh (faster if there are fewer forward pass terms).

The backward pass is normally much faster than the forward pass, unless pmethod =

"exhaustive". Reducing nprune reduces exhaustive search time. One strategy is to
first build a large model and then adjust pruning parameters such as nprune using
update.earth.

2.7 Model sizes and memory use

Earth doesn’t impose specific limits on the model size. Total model size is limited only
by the amount of memory on your system and your patience while waiting for the model
to be built. For big models, earth automatically does memory housekeeping internally
and invokes gc. Use trace=1.5 to trace earth’s memory usage.

The x,y interface to earth (or any model) uses a little less memory than the formula
interface, because converting the formula to x and y matrices takes a bit of memory
and time.

Reducing nk can significantly decrease memory (because it decreases the size of the basis
matrix bx and of the various versions of it needed internally during model building).

Increasing degree doesn’t change the memory requirements (but does increase running
time).

The test suite file earth/inst/slowtests/test.big.R tests an earth model with 8
million cases and 100 variables, and a model with 80 million cases and 2 variables. The
models were tested on a 64 bit Windows system with 32 gig of RAM. The models are
built with earth’s default arguments. Substantially bigger models are possible if nk is
reduced or more physical memory is added to the machine.

Accumulated numerical error could potentially be a problem with a very large x matrix,
although the very big models in the test suite seem unaffected by numerical error.

Building a big model can require more memory than physical memory. Memory page
thrashing is often not as bad as one might expect, because during the search for knots
the C code works with only a subset of the columns at a time.
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2.8 Standard model functions

Standard model functions such as case.names are provided for earth objects and aren’t
explicitly documented. Many of these give warnings when the results aren’t what you
may expect. Pass warn=FALSE to these functions to turn of just these warnings. The
full list of earth methods is:

anova.earth,
case.names.earth,
coef.earth,
deviance.earth,
effects.earth,
extractAIC.earth,
family.earth,
fitted.earth,
fitted.values.earth,
hatvalues.earth,
model.matrix.earth,
plot.earth,
print.earth,
print.summary.earth,
resid.earth,
residuals.earth,
summary.earth,
update.earth,
variable.names.earth,
weights.earth.

2.9 Multiple response models

If the response y has k columns then earth builds k simultaneous models.2 Each model
has the same set of basis functions (the same bx, selected.terms, dirs and cuts) but
different coefficients (the returned coefficients will have k columns). The models are
built and pruned as usual but with the GCVs and RSSs summed across all k responses
during the forward and backward passes. Earth minimizes the overall GCV (the sum
of the GCVs).

Once you have built your model, you can use plotmo [18] and its nresponse argument
to see how each response varies with the predictors.

Here are a couple of (artificial) examples to show some of the ways multiple responses
can be specified. Note that in R data.frames unfortunately can’t be used on the left
side of a formula, so cbind is used in the first example. The last example uses the
standard technique of specifying a tag (like log.O3=) to name a column.

2Note that this will be the case when a multilevel factor response is expanded by earth to multiple
indicator columns, see Chapter 5 “Factors (categorical variables)”.
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Examples:

earth(cbind(O3,wind) ~ ., data=ozone1) # formula interface

earth(O3 + wind ~ ., data=ozone1) # use + on left of formula

# requires earth version 5.0.0 (March 2019)

earth(ozone1[,-c(1,3)], ozone1[,c(1,3)]) # x,y interface

earth(x=data.frame(x1, x2, log.x3=log(x3)), y=data.frame(y1, y2))

Support for a plus sign + on the left of the formula was added in earth version 5.0.0
(March 2019)3. When using a plus this way, it’s best to keep the left side of the formula
simple, especially if there is a dot on the right.

Since earth attempts to optimize the set of basis functions for all models simultaneously,
the results for each model won’t be as “good” as building the models independently
(where goodness is measured by GRSq). However, the combined model may be a better
model in other senses, depending on what you are trying to achieve. For example,
it could be useful for earth to select the set of MARS terms that is best across all
responses. This would typically be the case in a multiple response logistic model if
some responses have a very small number of successes.

Note that the usual automatic scaling of y (via the Scale.y argument) doesn’t take
place if y has multiple columns. You may want to scale your y columns before calling
earth so each y column gets the appropriate weight during model building (a y column
with a big variance will influence the model more than a column with a small variance).
You could do this by calling scale before invoking earth, or by setting the Scale.y

argument, or by using the wp argument.

For more details on using residual errors averaged over multiple responses see for ex-
ample Section 4.1 of the FDA paper (Hastie, Tibshirani, and Buja [11]).

2.10 Weights

Case weights are implemented in earth using the standard technique of internally re-
placing the regression of y on x with a regression of sqrt(weights) * y on
sqrt(weights) * x. This is invisible to the user – it happens internally in the earth
function.

In the earth code, zero weights are internally converted to very small values (whereas
in the lm code, cases with zero weights are removed; this is more rigorous but adds
complexity when updating or plotting the model).

Weights are ignored when calculating and applying minspan and endspan—that is, for
the purposes of determining the minimum spacing of knots, an observation is treated
as a single observation regardless of its weight.

3Previous versions of earth treated a + on the left as arithmetic addition, as lm and glm still do.
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A note on speed. Critical to the MARS fast update formula (equation 52 in the MARS
paper) is the computational efficiency that results from processing the predictor values
in order. However, multiplying by sqrt(weights) changes the order of the values, in
general, so we can’t (easily) use the formula after weights have been applied.4 So instead
of using the formula, the current implementation of weights does a full regression at
each knot. This is slow. It could surely be optimized, but not to the extent of the code
for unweighted observations.

2.11 Migrating from mda::mars

The classic mda package [13] has an implementation of MARS which predates earth.

Changing your code to use earth instead of a mars from the mda package is usually
just a matter of changing the call from mars to earth. But there are a few argument
differences and earth will issue a warning if you give it a mars-only argument.

The resulting model will be similar but not identical because of small implementation
differences. For details, see the documentation of the function mars.to.earth in the
earth package.

If you are further processing the output of earth you will need to consider differences
in the returned value. The header of the source file mars.to.earth.R describes these.
Perhaps the most important is that mars returns the MARS basis matrix in a field called
”x” whereas earth returns ”bx”. Also, earth returns ”dirs” rather than ”factors”.

A note on wp argument. Earth’s internal normalization of wp is different from mars.
Earth uses wp <- sqrt(wp/mean(wp)) and mars uses wp <- sqrt(wp/sum(wp)). Thus
in earth, a wp with all elements equal is equivalent to no wp. For models built with wp,
multiply the GCV calculated by mars by length(wp) to compare it to earth’s GCV.

Earth is faster than mda::mars for large models. This is primarily because earth’s C
code (i) re-arranges the data for better cache use in modern processors, (ii) uses the
BLAS routines, (iii) uses Friedman’s fast MARS techniques [8], and (iv) saves certain
regression coefficients for re-use (see earth’s Use.beta.cache argument).

4Consider for instance the hinge function max(x - 123, 0). The x values greater than 123 that
support the hinge function may be reordered after multiplication by sqrt(weights); some of them
becoming less than the weighted 123 and some remaining greater.
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3 Termination conditions for the forward pass

The forward pass adds terms in hinge pairs until any of the following conditions is met.

(i) Reached the maximum number of terms nk.

(ii) Adding a term changes R2 by less than 0.001.

(iii) Reached a R2 of 0.999 or more.

(iv) GRSq is less than -10 (a pathologically bad GRSq, FAQs 13.11 and 13.12).

(v) No new term increases R2 (possibly because we have reached numerical accuracy
limits).

Not all the conditions above are strictly necessary (earth could just stop when it reaches
nk terms). However, the additional conditions save time by terminating when it is
pointless to continue, and also minimize the generation of terms with arbitrary knots
due to numerical noise.

Note that GCVs (via GRSq) are used during the forward pass only as one of the (more
unusual) stopping conditions. Changing the penalty argument doesn’t change the knot
positions.

Set trace=2 or greater to get details on the forward pass.

See also FAQ 13.14 “Why do I get fewer terms than nk, even with pmethod=none?”

For knowledgeable users only: The numbers 0.001 and 0.999 above can be changed
by changing earth’s thresh argument. Setting thresh all the way to zero (thresh=0)
disables all termination conditions, except nk and conditions involving numerical limits.
A potential problem is that this allows earth to continue processing even if numerical
issues cause instability.
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4 Generalized Linear Models (classification models)

Generalized Linear Models (GLMs) are a statistical technique often used when the
response is binary, categorical, or a count. Earth builds a GLM if you use its glm

argument. This earth-glm differs from a conventional GLM in that variables enter the
model with hinges, instead of directly as linear variables. And earth will do variable
selection, discarding variables that don’t contribute. The disadvantage is that model
statistics are no longer available (like standard errors on the coefficients).

To build a GLM model, earth first internally builds a conventional earth model, and
then invokes the standard R function glm on the earth basis matrix bx.

In more detail, the model is built as follows. Earth first builds a standard MARS model,
including the internal call to lm.fit on bx after the backward pass. (See Figure 1 and
Section 2.5 “The backward pass”.) Thus knot positions and terms are determined as
usual and all the standard fields in earth’s return value will be present. Earth then
invokes glm for the response on bx with the parameters specified in the glm argument
to earth. For multiple response models (when y has multiple columns), the call to glm

is repeated independently for each response. The results go into extra fields in earth’s
return value: glm.list, glm.coefficients, and glm.stats.

Earth’s internal call to glm is made with the glm arguments x, y, and model set TRUE
(see the documentation for glm for more information about those arguments).

Use summary(earth.model) as usual to see the model. Use summary(earth.model,

details=TRUE) to see more details, but note that the printed p values for the GLM
coefficients are meaningless (FAQ 13.8).

Use plot(earth.model$glm.list[[1]]) to invoke plot.glm to plot the internal glm
model.

The approach used for GLMs in earth was motivated by work done by Jane Elith and
John Leathwick ([15] is a representative paper).

4.1 GLM examples

The examples below show how to specify earth-glm models. The examples are only
to illustrate the syntax and not necessarily useful models. In these examples we use
trace=1 so earth shows how it expands the input data (as explained in Chapter 5
“Factors (categorical variables)” and Section 4.4 “Binomial pairs”).

(i) Two-level factor or logical response (binary response).

Internally in earth, the response is converted to a single column of 1s and 0s.

binary.mod <- earth(survived~., data=etitanic,

glm=list(family=binomial), trace=1)
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# equivalent but using earth.default

binary.mod <- earth(x=etitanic[,-2], y=etitanic[,2],

glm=list(family=binomial), trace=1)

We mention that the function plotd can be useful for these responses (Section 9.4).

(ii) Factor response (multinomial response).

This example is for a factor with more than two levels. (For factors with just two levels,
see the previous example.)

multinom.mod <- earth(pclass~., data=etitanic,

glm=list(family=binomial), trace=1)

Internally in earth, the factor pclass is expanded to three indicator columns.5 Sec-
tion 5.2 has more detail. Because of the “masking problem”, we mention that you
might consider FDA for factor responses with more than two levels (Chapter 8).

(iii) Binomial model specified with a column pair.

This is a single response model, but specified with a pair of columns (Section 4.4
“Binomial pairs”).

ldose <- rep(0:5, 2) - 2 # Venables and Ripley 4th edition page 191

sex <- factor(rep(c("male", "female"), times=c(6,6)))

numdead <- c(1,4,9,13,18,20,0,2,6,10,12,16)

numalive <- 20 - numdead

pair <- cbind(numalive, numdead)

pairmod <- earth(pair ~ sex + ldose, glm=list(family=binomial), trace=1)

We can also specify the two columns using a plus sign + on the left of the formula:

pairmod2 <- earth(numalive + numdead ~ sex + ldose,

glm=list(family=binomial), trace=1)

The use of plus like this on the left of the formula requires earth version 5.0.0 or later
(March 2019).6

The following illustrates use of a probit link, and (unnecessarily) increases maxit.

pairmod3 <- earth(numalive + numdead ~ sex + ldose,

glm=list(family=binomial(link=probit), maxit=100), trace=1)

5This differs from what would happen if we called glm directly with a multi-level factor response,
where pclass would be treated as binary: the first level versus all other levels.

6The lm and glm functions don’t work this way—they treat a + on the left of the formula as an
addition—they arithmetically add the columns to yield a single column response.
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(iv) Poisson model (count data)

Using insurance data from the MASS package:

library(MASS)

data(Insurance)

pois.mod <- earth(Claims ~ District + Group + Age + offset(log(Holders)),

data=Insurance, glm=list(family=poisson), trace=1)

With an offset term in the formula, the different methods used for calculating RSq
by earth and lm become evident. Earth calculates RSq (and GRSq) after subtracting
the offsets from the response and the fitted values.
This is a consequence of the fact that earth calculates RSq as 1-rss/tss, whereas lm
calculates RSq as regression.sum.of.squares/tss. Further discussion in FAQ 13.10
“Can R2 be negative?”.

(v) Standard earth model, the long way.

Using family=gaussian with an identity link builds a glm model which is equivalent
to a standard earth model.

gauss.mod <- earth(numdead ~ sex + ldose,

glm=list(family=gaussian(link=identity)), trace=1,)

print(gauss.mod$coefficients == gauss.mod$glm.coefficients) # all TRUE

4.2 GLM statistics printed by summary.earth

Earth prints some useful summary statistics for GLM models. For example, for the
above Poisson model summary(pois.mod) includes:

nulldev df dev df devratio AIC iters converged

236.26 63 70.077 58 0.70 399 4 1

This shows some essential statistics such as the deviance with its degrees-of-freedom.
Remember that these statistics are on the training data, so will tend to be optimistic
about performance on independent data.

The devratio is the deviance ratio or “fraction of deviance explained”, defined analo-
gously to R2 as

devratio = 1 - deviance / null deviance.

The deviance-ratio is a number between 0 and 1, with values closer to 1 indicating a
better fit. An intercept-only model has a deviance ratio of 0.
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4.3 Weights with GLM models, and “non integer” warnings

If we pass weights to earth, those weights are used when building both the internal
MARS model and the internal glm model.

The standard R glm function sometimes issues “non integer” warnings (whether glm is
called directly or via earth). These warnings often can be safely ignored:
https://stackoverflow.com/questions/12953045/warning-non-integer-successes-in-a-binomial-

Sometimes using a weights argument can trigger a spurious non-integer warning from
glm. Use family=quasibinomial instead of family=binomial to build the same model
without the warning (the model coefficients will be the same but model statistics like
the standard errors may differ).

4.4 Binomial pairs

Users of the glm function with binomial data will be familiar with the technique of
specifying a binomial response as a two-column matrix, with columns for the number
of successes and failures. Example (iii) on page 14 is an example. When the earth
argument glm=list(family=binomial) is used, earth automatically detects when such
columns are present in the response.7

Both earth and glm process these binomial pairs as follows. The two response columns
are converted internally to a single column, the success fraction for each pair:
nsuccess / (nsuccess + nfailure). This single column response is used to build
the internal model.

By default, case weights are set to the response row sums (nsuccess + nfailure for
each pair). If all the row sums are the same, this is equivalent to no weights. If weights
are specified as an argument when invoking earth or glm, they get multiplied by these
row sums. As a special case, if both nsuccess and nfailure are zero in a row, this is
treated as a success fraction of zero with a zero weight.

The above method of generating a single-column response and weights for binomial
pairs was introduced in earth version 5.0.0 (March 2019). It was introduced to make
earth’s handling of binomial pairs the same as glm. Previous versions of earth used the
unweighted first column of the response to build the internal MARS model.

Issues with binomial pairs

With binomial pairs, some issues arise to do with how earth calculates the GCV and
parameters like the minspan. These parameters are calculated using the number of
observations, but the effective number of observations for a binomial pair is not well

7Since, unlike glm, earth supports multiple responses (Section 2.9), earth must determine if two-
column response is a single binomial-pair response or a multiple response. Earth considers a response
y to be a binomial-pair if all of the following are true
(i) the family is binomial or quasibinomial
(ii) y has two columns
(iii) all y values are non-negative integers
(iv) at least one row of y sums to greater than 1.
If y has two columns but these conditions aren’t met, earth builds a multiple response model (Sec-
tion 2.9).
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defined. Is each row in the binomial pair matrix worth one observation, or worth
the total number of successes and failures for that row? Probably each row is worth
somewhere in between.

In practice, earth treats each row as a single observation (but weighted by the row sum).
Since this may be less than the effective number of observations, earth may underfit the
data (since it feels that there aren’t enough observations to build a complex model).
An intercept-only model is not uncommon.

To counteract underfitting, we can decrease the default minspan and endspan (using
say minspan=1 and endspan=1), and also consider reducing penalty (perhaps using
penalty=0 or -1). This risk here is that we may now overfit the data. There seems
to be no unequivocally reliable approach. Use of the “long” form of the data could
be considered (see the next section). Cross-validation may be of use here, if there is
enough data.
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Short versus long binomial data

Use the function expand.bpairs to convert the “short” form of the data (with a two-
column binomial pair response) to the equivalent “long” form (with a single response
column of TRUEs and FALSEs). See the help page of expand.bpairs for an example.

Models built with the short and long forms of the data won’t be the same in general. If
just glm is used (without earth), then the model coefficients and standard errors will be
the same, but the residuals and model statistics like the deviance and AIC will differ.
In an earth-glm model, in addition to these differences, the model coefficients will also
differ (because in general earth generates a different set of hinges for the short and long
data).

Here are example models built with short and long forms of data. The earth.short.lin
and earth.long.lin models are more for illustration than actual use.

ldose <- rep(0:5, 2) - 2 # Venables and Ripley 4th edition page 191

sex <- factor(rep(c("male", "female"), times=c(6,6)))

numdead <- c(1,4,9,13,18,20,0,2,6,10,12,16)

numalive <- 20 - numdead

glm.short <- glm(cbind(numalive,numdead) ~ ldose + sex, family=binomial)

earth.short <- earth(cbind(numalive,numdead) ~ ldose + sex,

glm=list(family=binomial))

earth.short.lin <- earth(cbind(numalive,numdead) ~ ldose + sex,

glm=list(family=binomial),

# coerce earth to build a linear (no hinge) model with all vars

# (generated model matches the glm.short model above)

linpreds=TRUE, thresh=0, penalty=-1)

data.short <- data.frame(numalive, numdead, ldose, sex)

data.long <- expand.bpairs(data.short, c("numalive", "numdead"))

# data.long$numalive will be a fraction 0...1

glm.long <- glm(numalive ~ ldose + sex, data=data.long, family=binomial)

earth.long <- earth(numalive ~ ldose + sex, data=data.long,

glm=list(family=binomial))

earth.long.lin <- earth(numalive ~ ldose + sex, data=data.long,

glm=list(family=binomial),

linpreds=TRUE, thresh=0, penalty=-1)

coef(glm.short)

coef(earth.short.lin) # same

coef(glm.long) # same

coef(earth.long.lin) # same

coef(earth.short) # different if different hinge functions

coef(earth.long) # different if different hinge functions
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5 Factors (categorical variables)

This chapter explains how factors in the data get “expanded” before the matrices get
passed to the MARS engine.

Use trace=1 or higher to see the column names of the x and y matrices after factor
expansion. Use trace=4 to see the first few rows of x and y after factor expansion.

5.1 Factors in the predictors

Earth treats factors in the right side of the formula in the same way as standard R
models such as lm. Thus factors are expanded using the current setting of contrasts.
See the variable sex in the example in Section 5.3. This expansion happens whether
earth is invoked via the formula or the x,y interface.

5.2 Factors in the response

Earth treats factors in the response in a non-standard way that makes use of earth’s
ability to handle multiple responses. This happens whether earth is invoked via the
formula or the x,y interface.

A two level factor (or logical) is converted to a single indicator column of 1s and 0s.

A factor with three or more levels is converted into k indicator columns of 1s and 0s,
where k is the number of levels. For example, if the response is a factor with levels
"blue", "green", and "red", the response will be expanded to three columns like this
(the actual data will vary but each row will have a single 1):

blue green red # one column for each factor level

0 1 0 # each row has a single 1

1 0 0

0 0 1

0 0 1

0 1 0

...

This expansion to multiple columns (which only happen for factors with more than two
levels) means that earth will build a multiple response model as described in Section 2.9
“Multiple responses”.

Some details on factor expansion. For an earth factor response, the contrastsmatrix is
thus an identity matrix—see the help page of contr.earth.response. Earth response
factors are handled in this way regardless of the global options("contrasts") setting,
and regardless of whether the factor is ordered or unordered. In distinction, a standard
treatment contrast on the right side of the formula has no first "blue" column, to
prevent linear dependencies in the x matrix. See the help page of contrasts for details.

Note also that, in addition to factor responses, paired binomial responses are treated
specially (Section 4.4 “Binomial pairs”).
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5.3 Factor example

Here is an example which uses the etitanic data to predict the passenger class. We
use the optional trace=1 here so earth shows the expanded factor names.

> data(etitanic)

> head(etitanic) # pclass and sex are factors

pclass survived sex age sibsp parch

1 1st 1 female 29.000 0 0

2 1st 1 male 0.917 1 2

3 1st 0 female 2.000 1 2

> earth(pclass ~ ., data=etitanic, trace=1) # note col names in x and y below

x[1046,5] with colnames survived sexmale age sibsp parch

y[1046,3] with colnames 1st 2nd 3rd

rest not shown here...
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6 The linpreds argument

With the linpreds argument, we can specify which predictors should enter linearly,
instead of in hinge functions.

We give a simple example where this might be useful. Starting with the standard earth
model

fit1 <- earth(Volume ~ ., data = trees)

plotmo(fit1)

we see in the plotmo graphs (Figure 2, top row) or by running evimp that Height isn’t
as important as Girth. For collaborative visual evidence that Girth is a more reliable
indicator of Volume, look at the last row of the following pairs plot (not shown):

pairs(trees, panel = panel.smooth)

Since we want the simplest model that describes the data, we may decide that Height
should enter linearly, not in a hinge function (Figure 2, bottom row):

fit2 <- earth(Volume ~ ., data = trees, linpreds = "Height")

summary(fit2)

which yields

coefficients

(Intercept) 4.221

Height 0.343 # Height enters linearly

h(14.2-Girth) -3.199

h(Girth-14.2) 6.405

In this example, the second simpler model has almost the same R2 as the first model.

6.1 Specifying linpreds

We can make all predictors enter linearly like this (the single TRUE is recycled to the
length of linpreds):

earth(Volume~., data=trees, linpreds=TRUE)

Other ways of specifying linpreds:

earth(Volume~., data=trees, linpreds=2) # column index in x

earth(Volume~., data=trees, linpreds=c("Height","Girth")) # multiple variables

Note that grep is used for matching when linpreds is a character vector. Thus "wind"
will match all variables that have "wind" in their names. Use the regular expression
"^wind$" to match only the variable named "wind".

In the current implementation, the GCV penalty for predictors that enter linearly is
the same as that for predictors with knots. One could argue that that isn’t quite
correct; linear terms should be penalized less. (It depends on whether we make an
a priori decision to treat the variable linearly, or make the decision based on building
a preliminary model from the same data.)
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Figure 2: The linpreds argument.
Top row: Standard earth model of the trees data.
Bottom row: Same, but with Height entering linearly ( linpreds="Height").

6.2 Generating the same model as lm

Sometimes we would like to generate the same model as lm, with all predictors entering
linearly. But the linpreds argument doesn’t stipulate that a predictor must enter
the model, only that if it enters it should enter linearly. If a variable has negligible
additional predictive power, earth won’t include it.

To circumvent this automatic variable selection, we can increase the likelihood (but not
guarantee) that earth includes all variables by using both the following arguments:

(i) thresh=0. Tell the forward pass to include a predictor even if it has very lit-
tle predictive power (Chapter 3, last paragraph). Note that linearly dependent
variables may still be excluded.

(ii) penalty=-1. Tell the backward pass not to discard any terms (FAQ 13.15). Also
prevents the forward pass from terminating because GRSq is too negative (Chap-
ter 3 condition (iv)).

Example:

earth(Volume~., data=trees, linpreds=TRUE, thresh=0, penalty=-1)
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6.3 Automatically treating a predictor as linear

Under certain conditions, earth will automatically enter a predictor linearly: During
the forward pass, if earth discovers that the best knot is at the predictor minimum,
then earth adds the predictor to the model linearly (instead of in a hinge function).
The left side of Figure 3 illustrates. This means that there can be negative values in
the MARS basis matrix bx (whereas in the classic MARS basis matrix, all values are
non-negative).

The right side of Figure 3 illustrates the classic MARS behavior in this situation. Set
the argument Auto.linpreds=FALSE to get this behavior. All values in the basis matrix
will be non-negative.

Auto.linpreds = TRUE   (default)

●
●

●
●

●
●

●

●
●

●

● training data
earth model

Same data as graph to the right.
Any data beyond the range of this
training data is assumed to be linear.

Auto.linpreds = FALSE

●
●

●
●

●
●

●

●
●

●

● training data
earth model

Classic MARS.
The knot is set at the minimum
value of the predictor.

Figure 3: The Auto.linpreds argument.
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7 The allowed argument

You can specify how variables are allowed to enter MARS terms with the allowed

argument. Within each step of the forward pass, earth calls the allowed function after
discovering the best knot for a variable. The potential term is considered for inclusion
only if the allowed function returns TRUE. The default function always returns TRUE.

(Note added in 2018: In retrospect, the interface is probably too complicated. Instead
of working through the following explanations, you may want to tweak the example
code in Section 7.2 or look at examples on the CrossValidated web site.)

The allowed function should have the following arguments

function(degree, pred, parents, namesx, first)

where

degree is the interaction degree of the candidate term. Will be 1 for additive terms.

pred is the index of the candidate predictor. A predictor’s index in pred is the column
number in the input matrix x after factors have been expanded. Use earth’s
trace=1 argument to see the column names after expansion.

parents is the candidate parent term’s row in dirs.

namesx is optional and if present is the column names of x after factors have been
expanded.

first is optional and if present is TRUE the first time your allowed function is invoked
for the current model, and thereafter FALSE, i.e. it is TRUE once per invocation
of earth.

7.1 Examples

The interface is flexible but requires a bit of programming. We start with a simple
example, which completely excludes one predictor from the model:

example1 <- function(degree, pred, parents) # returns TRUE if allowed

{

pred != 2 # disallow predictor 2, which is "Height"

}

a1 <- earth(Volume ~ ., data = trees, allowed = example1)

print(summary(a1))

But that isn’t much use, because it’s simpler to exclude the predictor from the input
matrix when invoking earth:

a1a <- earth(Volume ~ . - Height, data = trees)

The example below is more useful. It prevents the specified predictor from being used
in interaction terms. (The example is artificial because it’s unlikely we would want to
single out humidity from interactions in the ozone data.)
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example2 <- function(degree, pred, parents)

{

# disallow humidity in terms of degree > 1

# 3 is the "humidity" column in the input matrix

if (degree > 1 && (pred == 3 || parents[3]))

return(FALSE)

TRUE

}

a2 <- earth(O3 ~ ., data = ozone1, degree = 2, allowed = example2)

print(summary(a2))

Details on the above code: The parents argument is the candidate parent’s row in the
dirs matrix (dirs is described in the Value section of the earth help page). Each
entry of parents is 0, 1, -1, or 2, and we index parents on the predictor index. Thus
parents[pred] is non-zero if pred is in the parent term. (Yes, it’s confusing. Maybe
the easiest approach is to find the example in this chapter that is closest to what you
want, and modify it for your needs.)

The following example allows only the specified predictors in interaction terms. Inter-
actions are allowed only for predictors in allowed.set, which you can change to suit
your needs.

example3 <- function(degree, pred, parents)

{

# allow only humidity and temp in terms of degree > 1

# 3 and 4 are the "humidity" and "temp" columns

allowed.set = c(3,4)

if (degree > 1 &&

(all(allowed.set != pred) || any(parents[-allowed.set])))

return(FALSE)

TRUE

}

a3 <- earth(O3 ~ ., data = ozone1, degree = 2, allowed = example3)

print(summary(a3))

7.2 Using predictor names instead of indices in the allowed

function.

You can use predictor names instead of indices using the optional namesx argument. If
present, namesx is the column names of x after factors have been expanded (Section 5.1).
The first example above (the one that disallows Height) can be rewritten as

example1a <- function(degree, pred, parents, namesx)

{

namesx[pred] != "Height"

}

The next page has a few more examples.
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#--- no predictor in PREDICTORS is allowed to interact with any predictor in PARENTS

#--- but all other interactions are allowed

PREDICTORS <- c("age")

PARENTS <- c("survived", "parch")

example4 <- function(degree, pred, parents, namesx)

{

if (degree > 1) {

predictor <- namesx[pred]

parents <- namesx[parents != 0]

if((any(predictor %in% PREDICTORS) && any(parents %in% PARENTS)) ||

(any(predictor %in% PARENTS) && any(parents %in% PREDICTORS))) {

return(FALSE)

}

}

TRUE

}

a4 <- earth(sex~., data=etitanic, degree=2, allowed=example4)

plotmo(a4)

#--- predictors in PREDICTORS are allowed to interact with predictors in PARENTS

#--- but no other interactions are allowed

PREDICTORS <- c("age")

PARENTS <- c("survived", "parch")

example5 <- function(degree, pred, parents, namesx)

{

if (degree <= 1)

return(TRUE)

predictor <- namesx[pred]

parents <- namesx[parents != 0]

if((any(predictor %in% PREDICTORS) && any(parents %in% PARENTS)) ||

(any(predictor %in% PARENTS) && any(parents %in% PREDICTORS))) {

return(TRUE)

}

FALSE

}

a5 <- earth(sex~., data=etitanic, degree=2, allowed=example5)

plotmo(a5)

7.3 Further notes on the allowed argument

The basic MARS model building strategy is always applied even when there is an
allowed function. For example, earth considers a term for addition only if all factors of
that term except the new one are already in a model term. This means that an allowed

function that inhibits, say, all degree 2 terms will also effectively inhibit higher degrees
too, because there will be no degree 2 terms for earth to extend to degree 3.
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8 Using earth with fda and mda

Earth can be used with the functions fda and mda in the mda package [13] to build Flex-
ible Discriminant Analysis (FDA) and Multiple Discriminant Analysis (MDA) models.

You can pass arguments such as degree=2 to earth by including them in the call to
fda. Use the earth argument keepxy=TRUE if you want to call plotmo later. Use the
fda/mda argument keep.fitted=TRUE if you want to call plot.earth later (actually
only necessary for large datasets, see the description of keep.fitted in fda’s help
page).

Example (this gives the right side of Figure 4):

library(mda)

(fda <- fda(Species~., data=iris, keep.fitted=TRUE, method=earth, keepxy=TRUE))

summary(fda$fit) # examine earth model embedded in fda model

plot(fda) # right side of the figure
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Figure 4: Left: FDA of the iris data, built on a linear model.
Right: FDA built with an earth model using the code in the text. Note the better
grouping of classes.

The graphs show the training observations transformed into the discriminant
space. This transformation is done by the regression function plugged into fda and by
optimal scoring (Section 8.1). There are three classes in this example so we have two
discriminant variables. A new observation is classified by predict.fda as the class of
the nearest centroid in discriminant space (the centroids are at the ringed numbers 1,
2, and 3).
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Using plotmo we can plot the per-predictor dependence of the fda variates like this:

plotmo(fda, type="variates", nresponse=1, clip=F) # 1st disc var (Figure 5)

plotmo(fda, type="variates", nresponse=2, clip=F) # 2nd disc var (not shown)

We can also look at the earth model embedded in the FDA model:

plotmo(fda$fit, nresponse=1, clip=F) # earth in FDA, 1st disc var (Figure 6)

plotmo(fda$fit, nresponse=2, clip=F) # earth in FDA, 2nd disc var (not shown)
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Figure 5: plotmo graphs of the FDA model with a linear submodel (the left of Figure 3).
The graphs show the contribution of each predictor to the first discriminant variable.
The second discriminant variable isn’t shown here.
(The code to generate this plot isn’t in the text.)
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Figure 6: plotmo graphs of the FDA model with an earth submodel (the right of Fig-
ure 4). The graphs show the contribution of each predictor to the first discriminant
variable.
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Figure 7: plotmo graphs of the earth model embedded in the FDA model (first discrim-
inant variable before scoring). Earth didn’t include Sepal.Width.
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8.1 A short introduction to Flexible Discriminant Analysis

Flexible Discriminant Analysis (FDA) is Linear Discriminant Analysis (LDA) on steroids.
LDA uses a hyperplane to separate the classes. FDA replaces this hyperplane with a
curved or bent surface to better separate the classes. The trick FDA uses to achieve
this is to convert the classification problem into a regression problem. This allows us
to plug in “any” regression function to generate the discriminant surface. If we plug in
a linear regression function, FDA will generate a hyperplane, just like LDA. If we plug
in earth, FDA will generate a surface defined by MARS hinge functions.

FDA converts a classification problem into a regression problem via optimal scoring
(Figure 8). Essentially, this creates a new response variable by assigning new num-
bers (scores) to the factor levels in the original response. So for example setosa=1,
versicolor=2, and virginica=3 may become setosa=1.2, versicolor=-1.2, and
virginica=0.

Actually, FDA creates several response variables like this, each with its own set of
scores. If there are K response classes, FDA creates K − 1 variables. So for the Iris
dataset, which has three classes (or “levels” in R parlance), we have two discriminant
variables (Figure 4). For a binary response FDA creates one discriminant variable, and
the discriminant space is one dimensional. Note that the dimension of the discriminant
space depends on the number of classes, not on the number of predictors — a nice
example of dimensionality reduction. Sometimes the best prediction results on inde-
pendent data are obtained if we use only some of the discriminant variables, and thus
a further reduction in dimensionality is possible.

Further details may be found in Hastie et al. [12] Section 12.5 and the FDA pa-
per (Hastie, Tibshirani, and Buja [11]).

Using FDA is usually recommended for a response that is a factor with more than two
levels, rather than using a regression function like lm or earth directly on an indicator
matrix. This is because of the “masking problem” (e.g. Hastie et al. [12] Section 4.2
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Figure 8: Left: Some toy data with three response categories.
Right: Rescoring assigns a new number to each category so the data are in a better form
for linear separation.
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“Linear Regression of an Indicator Matrix”). In practice the best advice is try it and
see if you get better results on your data.

Two advantages of FDA are (i) FDA will often perform better than LDA (or QDA)
because it generates a flexible surface to separate the classes, and (ii) for responses
which have more than two levels, FDA will often perform better than regression on an
indicator matrix because it doesn’t suffer from the masking problem.

We mention that the acronym FDA for “Flexible Discriminant Analysis” is not to be
confused with the same acronym for “Functional Data Analysis” [23].

TODO When is FDA exactly equivalent to LDA?
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9 Plots

This chapter first describes the graphs produced by plot.earth then looks at a few
other plots.

9.1 Short version of this chapter

For readers who don’t wish to read this entire chapter, here is the least you need to
know.

The plot.earth function produces four graphs (Figure 9).

Use the Model Selection plot to see how the fit depends on the number of predictors,
how the final model was selected at the maximum GCV, and so on.

Use the Residuals vs Fitted graph to look for outliers and for any obviously strange
behavior of the fitted function.

You can usually ignore the other two graphs.

9.2 Interpreting plot.earth graphs

The graphs plotted by plot.earth, apart from the Model Selection plot, are standard
tools used in residual analysis and more information can be found in most linear regres-
sion textbooks. The plot.earth function is a wrapper around the plotres function
in the plotmo package, so see also the documentation for that function.

Heteroscedasticity of the residuals isn’t as important with earth models as it is with
linear models, where homoscedasticity of the residuals is used a check that a linear model
is appropriate. Also, in linear models homoscedasticity of the residuals is required for
the usual linear model inferences (such as calculation of p values), which isn’t done
with earth models. You can model the variance of the earth model residuals using the
varmod arguments as described in the “Variance models in earth” vignette.

9.2.1 Nomenclature

The residuals are the differences between the values predicted by the model and the
corresponding response values. The residual sum of squares (RSS) is the sum of the
squared values of the residuals.

R2 (RSq, also called the coefficient of determination) is a normalized form of the RSS,
and, depending on the model, varies from 0 (a model that always predicts the same
value i.e. the mean observed response value) to 1 (a model that perfectly predicts the
responses in the training data).1

The Generalized Cross Validation (GCV) is a form of the RSS penalized by the effective

1Not quite true, see FAQ 13.10 “Can R2 be negative?”
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Figure 9: Graphs produced by example(plot.earth).

number of model parameters (and divided by the number of observations). More details
can be found in FAQs 13.6 and 13.7. The GRSq normalizes the GCV in the same way
that the R2 normalizes the RSS (see FAQ 13.11 and the definition of GRSq in the Value
section of earth’s help page).

The GCV and GRSq are measures of the generalization ability of the model, i.e., how
well the model would predict using data not in the training set. There is some arbi-
trariness in their values since the effective number of model parameters is a just an
estimate in MARS models.
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9.2.2 The Model Selection graph

For concreteness, the description of the graphs here is based on the plot produced by
example(plot.earth) and shown in Figure 9. (Your version of earth might produce
slightly different graphs.)

In the example Model Selection graph (top left of Figure 9) the RSq and GRSq lines
run together at first, but diverge as the number of terms increases. This is typical
behavior, and what we are seeing is an increased penalty being applied to the GCV as
the number of model parameters increases.

The vertical dotted line is positioned at the selected model. This will be at the maxi-
mum GRSq, unless pmethod="none" was used. In our example the vertical dotted line
indicates that the best model has 12 terms and uses all 9 predictors (the number of
predictors is shown by the black dashed line).

We can also see the number of predictors and terms we would need if we were prepared
to accept a lower GRSq (you can use the earth parameter nprune to trim the model).

To reduce clutter and remove the right-hand axis, use col.npreds=0.

9.2.3 The Residuals vs Fitted graph

The Residuals vs Fitted graph (bottom left of Figure 9) shows the residual for each
value of the predicted response. By comparing the scales of the axes one can get an
immediate idea of the size of the residuals relative to the predicted values.

The red line is a lowess fit. (Readers not familiar with lowess fits can think of them
as fancy moving averages.) In this instance the mean residual diverges at low and high
fitted values.

Ideally the residuals should show constant variance i.e. the residuals should remain
evenly spread out, or homoscedastic, as the fitted values increase. (However, in earth,
constant variance of the residuals isn’t as important as it is in linear models.) In the
example graph we see heteroscedasticity — the residuals spread out in a “<” shape.
There is a decrease in the accuracy of the predictions as the predicted value increases.

To reduce the heteroscedasticity and possibly simplify the model, we can refit the model
after performing a transform on the response. A cube root transform, for instance, evens
out the residuals for this data (Figure 10, middle plot):

fit <- earth(O3^(1/3) ~ ., data = ozone1, degree = 2)

plot(fit)

Transforming the data may cause other problems, such as mismatches to a known
underlying physical model or difficulties in interpretation, so it’s best to consult (or
become) an expert on the type of data being modeled (in this case, ozone pollution
data — an expert may say that taking the cube root is meaningless, or conversely may
say that it is essential).

(Be aware that R2 and related statistics are affected by a transform on the response
such as cube root we used above. If you are comparing models, for the model on the
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Figure 10: Three models built from the ozone data.
Left: The residuals of an earth model (same as bottom left of Figure 9).
Middle: The residuals of an earth model built on the cube root of the response.
Right: The residuals of a linear model.

transformed data, backtransform the predicted values by cubing them before evaluating
the R2.)

Compare the residuals of the earth model to the linear model (Figure 10, right plot),
and notice how the red smooth lines show that the earth model is more successful at
modeling non-linearities in the data. The code for the linear model plot is:

fit.lm <- lm(O3 ~ ., data = ozone1)

plot(fit.lm, which=1) # which=1 for the residuals plot only

plotres(fit.lm, which=3) # alternative aproach using plotres (not shown)

One should always look at the residuals themselves as well as looking at the lowess fit,
which is itself an approximation. However, in the example plot the lowess line appears
reliable.

Cases 192, 193, and 226 have the largest residuals and seem to fall suspiciously into a
separate cluster. (If overplotting makes the labels hard to read, reduce the number of
labels with the id.n argument of plot.earth. Conversely, increase id.n to label more
residuals.) As a general rule, it is worthwhile investigating cases with large residuals.
Perhaps they should be excluded when building the model. Conversely, it is possible
that they reveal something important about the data that could warrant changes to
the model. It may also be worthwhile to look at cases with small residuals if there is
non-linearity in that region. To see the example input matrix ordered on the magnitude
of the residuals, use ozone1[order(abs(earth.model$residuals)),].

Sometimes groups of residuals appear in a series of parallel lines (e.g. Figure 10 middle
plot). Usually these lines don’t indicate a problem. They are formed when a set of
plotted points has the same predicted or observed value, often due to discretization in
the measurement of the observed response (e.g. by rounding to the nearest inch).

The “Variance models in earth” vignette [17] has more discussion on residual plots.
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Cumulative Distribution plot
with info=TRUE

9.2.4 The Cumulative Distribution graph

The Cumulative Distribution graph (Figure 9 top right and Figure 11) shows the cu-
mulative distribution of the absolute values of residuals. What we would ideally like to
see is a graph that starts at 0 and shoots up quickly to 1.

This plots a step function for the n training cases: for each step 1/n in the vertical
direction, in the horizontal direction we move to the next biggest absolute residual. An
approximate bell-shaped distribution of absolute residuals will translate to an approx-
imate S shape in the cumulative distribution plot (which is not really the situation in
this example).

In the example graph, the median absolute residual is just over 2.0 (look at the vertical
gray line for 50%). We see that 95% of the absolute values of residuals are less than
about 7.0 (look at the vertical gray line for 95%). So in the training data, 95% of the
time the predicted value is within 7.0 units of the observed value.

Pass info=TRUE to plot.earth to determine numbers like the 7.0 with more precision,
as illustrated in Figure 11.

9.2.5 The QQ graph

The QQ (quantile-quantile) plot (bottom right of Figure 9) compares the distribution
of the residuals to a normal distribution. If the residuals are distributed normally they
will lie on the line. (Normality of the residuals often isn’t too important for earth
models, but the graph is useful for discovering outlying residuals and other anomalies.)
Following R convention, the abscissa is the normal axis and the ordinate is the residual
axis; some popular books have it the other way round. In the example, we see divergence
from normality in the left tail — the left tail of the distribution is fatter than that of a
normal distribution. Once again, we see that cases 192, 193, and 226 have the largest
residuals.
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Figure 12: plotd

9.3 Earth-glm models and plot.earth

By default, the plot.earth function ignores the glm part of the model, if any.8 The
plotted residuals are residuals from earth’s call to lm.fit after the backward pass, not
glm residuals (although you change this using plot.earth’s type argument).

9.4 Earth-glm models and plotd

For earth-glm models, plotd (in the earth package) can be convenient. Example (Fig-
ure 12):

fit <- earth(survived ~ ., data=etitanic, degree=2, glm=list(family=binomial))

plotd(fit) # left side of figure

plotd(fit, hist=TRUE) # right side of figure

We can use plot.glm to plot the glm model within the earth model like this (not
shown):

data(etitanic)

fit <- earth(survived~., data=etitanic, glm=list(family=binomial))

par(mfrow=c(2,2)) # four figures on one page

plot(fit$glm.list[[1]]) # invoke plot.glm

9.5 Cross-validated models and plot.earth

Earth builds cross-validated models with the nfold argument (Chapter 10 “Cross-
Validation”). The Model Selection plot will show cross-validation statistics, but only if
keepxy=TRUE was also used when building the model. (The cross-validation statistics
are ignored in the other plots generated by plot.earth.) Figure 13 shows an example:

8Earth-glm models are models created with earth’s glm argument, Chapter 4.
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fit <- earth(survived ~ ., data = etitanic, degree=2, nfold=5, keepxy=TRUE)

plot(fit, which=1, col.rsq=0) # which=1 for Model Selection plot only (optional)

In Figure 13, as usual the vertical black dotted line shows the optimum number of terms
determined in the standard way at the peak GCV.

The pale pink lines show the out-of-fold RSq’s for each fold model. The red line is the
mean out-of-fold RSq for each model size.

The vertical red dotted line is at the maximum of the red line, i.e., the vertical line
shows the optimum number of terms estimated by cross-validation. This is CV-with-
averaging ; another approach (not supported by earth) is CV-with-voting which uses the
modal number-of-terms, i.e., the number-of-terms that is most often selected at a fold.
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Figure 13: A cross-validated
earth model
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Figure 14: The same model, cross-validated three times. Note the random variation
in the cross-validation RSqs as earth partitions the data into folds differently for each
run.
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Ideally the number of terms selected using GRSq would always match the number
of terms determined by cross-validation, and the two vertical lines coincide (although
plot.earth jitters the lines slightly to prevent overplotting). In reality, the vertical
lines are usually close but not identical. In the following example, note how the graph
varies as the cross-validation folds vary in each invocation of earth (Figure 14):

plot1 <- function()

{

fit <- earth(survived~., data = etitanic, degree=2,

nfold=5, keepxy=TRUE)

plot(fit, which=1, ylim=c(0, .5), col.rsq=NA, legend.pos=NA)

}

set.seed(1)

plot1()

set.seed(2)

plot1()

set.seed(3)

plot1()

The above code keeps the vertical axis range constant across all three graphs with
ylim=c(0,.5), reduces clutter with col.rsq=NA, and removes the legend with legend.pos=NA.

We mention that in Figures 13 and 14 the cross-validation results are consistent with
the results obtained in the standard way using the GCV. The solid black and red lines
are close. The vertical dotted red line dances around, but mostly because of the flatness
of the curve after about 6 terms. The position of the vertical line would be more stable if
we used the one-standard-error rule (not supported by earth) or the ncross argument.

For the curious, plot.earth.models can be used to compare the GCV curve of models
built at each fold. Example (Figure 15):

fit <- earth(survived ~ ., data=etitanic, degree=2,

nfold=3, keepxy=TRUE)

plot.earth.models(fit$cv.list, which=1, ylim=c(0, .5))

0 5 10 15

Model Comparison

Number of terms

0
0
.1

0
.2

0
.3

0
.4

0
.5

G
R

S
q

fold1

fold2

fold3

Figure 15: Comparing the
GRSq curves of models at three
cross-validation folds.
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10 Cross-validating earth models

In this chapter we assume that you already know the basics of cross-validation (i.e.,
partition the data into nfold subsets, repeatedly build a model on all but one of those
subsets, measure performance on the left-out data).

Use cross-validation to get an estimate of R2 on independent data or to select a model.
This is an alternative to the GRSq used by earth. (FAQ 13.6).

Here is an example. Note the nfold parameter and the cross-validation R2, called
CVRSq below. The left side of Figure 16 illustrates this model.

> fit <- earth(survived ~ ., data=etitanic, keepxy=TRUE, degree=2, nfold=5)

> summary(fit)

... usual text omitted here ...

GCV 0.14 RSS 139 GRSq 0.42 RSq 0.45 CVRSq 0.41

Note: the cross-validation sd's below are standard deviations across folds

Cross validation: nterms 7.60 sd 0.84 nvars 5.40 sd 0.52

CVRSq sd ClassRate sd MaxErr sd

0.41 0.064 0.79 0.032 -1.2 1

Cross-validation is done if nfold is greater than 1 (typically 5 or 10). Earth first builds
a standard model with all the data as usual. This means that the standard fields in
earth’s return value appear as usual, and will be displayed as usual by summary.earth.
Earth then builds nfold cross-validated models. For each fold it builds an earth model
with the in-fold data (typically nine tenths of the complete data) and using this model
measures the R2 from predictions made on the out-of-fold data (typically one tenth of
the complete data). The final mean CVRsq printed by summary.earth is the mean of
these out-of-fold R2s.

The cross-validation results go into extra fields in earth’s return value. All of these
have a cv prefix — see the Value section of the earth help page for details. For details
on statistics like ClassRate, see Section 10.7 “Cross-validation statistics returned by
earth”.

For reproducibility, call set.seed before calling earth with nfold.

10.1 What is the best value for nfold?

The question of choosing the number of cross-validation folds remains an open research
question. We can only suggest that you try 5- or 10-fold cross-validation, unless you
have a small dataset. With a small dataset some experimentation may be needed to get
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Figure 16:
Left Earth model built with nfold=5.
The pink lines show the out-of-fold R2 for each fold. The thick red line is the mean
of the pink lines. The black line is the usual GRSq line for the full model, ignoring
cross-validation.
Right Same but with ncross=3, nfold=5. There are 15 folds in all.

plausible results. Some gnarly details are discussed in the next chapter (for example
Section 11.4 “Bias of cross-validation estimates”).

10.2 The ncross argument

If we run earth twice with the same nfold argument we will get different cross-
validation results, because earth randomly splits the data into folds differently each
time. To average out this variation for more stable results, use the ncross argument
to repeat the whole process of taking nfold folds multiple times. Example (right side
of Figure 16):

fit <- earth(survived ~ ., data=etitanic, degree=2,

keepxy=TRUE, ncross=3, nfold=5)

plot(fit, which=1, col.rsq=0)

10.3 Plotting cross-validation results

If you want plot.earth to show cross-validation statistics, use keepxy=TRUE so earth
calculates the oof.rsq for every model size in every fold. That’s why we use keepxy=TRUE
in nearly all the examples in this chapter. More example plots may be found in Sec-
tion 9.5.

Furthermore, if you want to use plot.earth or plotmo on a fold model (a model in
the earth model’s cv.list), use keepxy=2 in the call to earth. This saves the in-fold
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data with each fold model.

10.4 Tracing cross-validation

With trace=.5 or higher, earth prints progress information as cross-validation proceeds.
For example

CV fold 3: CVRsq 0.622 n.oof 86 12% n.fold.nz 384 41% n.oof.nz 43 39%

shows that in cross-validation fold 3, the CVRsq for the fold model was 0.622, measured
on the 86 observations in the out-of-fold set.

The print also shows the number and percentage of non-zero values in the observed
response in the in-fold and out-of-fold sets. This is useful if we have a binary or factor
response and want to check that we have enough examples of each factor level in each
fold. With the stratify argument (which is enabled by default), earth attempts to
keep the numbers of occurrences of any given level in the response constant across folds.

10.5 Two ways of collecting R2

Earth uses two ways of collecting the R2s generated during cross-validation (it can be
confusing). The names used for these are CVRsq and oof.rsq. The names are somewhat
arbitrary, but used consistently in earth’s code and documentation. See Figure 17 for
an overview.

(i) A folds’s CVRsq is calculated from predictions made on the out-of-fold observations
using the model built from the in-fold data. Earth builds the fold model like any
other earth model, selecting the optimum number of terms using the GCV of the
training (in-fold) data. The mean of these per-fold CVRsq’s is the CVRsq printed
by summary.earth.

(ii) The oof.rsq’s are primarily for model selection, i.e., for selecting the best number
of terms. They aren’t printed by summary.earth, but by default are plotted by
plot.earth (the pink lines in Figure 16). The CVRSqs described in (i) above are
a subset of these.

A oof.rsq is calculated for every model size in each fold. (The model size is the
number of terms in the model.) For each fold, it is calculated from predictions
made on the out-of-fold observations using a model built with the in-fold data,
after the model is pruned to the given size.

The oof.rsq’s are calculated only when keepxy=TRUE or pmethod="cv". This is
because calculating them is slow — earth has to call update.earth and predict

for every model size in every fold.

10.6 Using cross-validation to select the number of terms

Use pmethod="cv" to select the select a model using cross-validation. Example (Fig-
ure 18):
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fit <- earth(survived ~ ., data=etitanic, degree=2,

pmethod="cv", ncross=3, nfold=5)

plot(fit, which=1, col.rsq=0)

In Figure 18, we see that the GCV would have chosen 8 terms, but cross-validation
chose 7 terms. (But since the red curve is quite flat around that number of terms,
cross-validation may choose a different number of terms if a different random seed is
used before running earth. In practice, a higher value of ncross is necessary to get
stable results with pmethod="cv".)

This is what happens internally. During cross-validation, earth measures the out-of-fold
R2 for each fold model (the pink lines). The mean out-of-fold R2 is then calculated for
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Figure 17: Five-fold cross-validation of
an earth model.

This is the same model as the left
side of Figure 16, but here we display
slightly different information.

A black dot show the CVRsq at each
fold. This is the out-of-fold R2 for the
selected model at the fold (where the
model is selected using the GRSq on
the in-fold training data.) The CVRsq

printed by summary.earth is the mean
vertical position of these dots.

The thick red line is the mean of
the pink lines (the mean oof.rsq).
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Figure 18: Selecting a model with
pmethod="cv".

This is identical to the right
side of Figure 16, except that here
there is a black circle at the selected
model, and the legend is slightly
different.

In practice, for stable model
selection a higher value of ncross
is recommended than the value 3

used here.
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each model size (the red line). The optimum number of terms is taken to be at the
maximum mean out-of-fold R2 (the highest point of the red line). Earth then rebuilds
the model using all the data, choosing the model in the backward pass at this optimum
number of terms.

You will notice that in the figure the pink lines for some fold models are truncated at
the right. This is because the maximum number of terms for those models happens to
be less than the 16 terms of the full model.

The red mean line is also truncated. For a given number of terms, half or more of
the pink lines have to be present for the mean to be considered valid. This prevents
instability in the mean at the right of the plot.

10.7 Cross-validation statistics returned by earth

Section 10.5 described the R2s collected during cross-validation. This section describes
various additional cross-validation statistics.

Each of these is measured on the out-of-fold set for each fold, and summarized by
averaging across all folds (except that MaxErr is “summarized” by taking the worst
error across all folds). Use summary.earth to see the summary statistics and their
standard deviation across folds.1 See the Value section of the earth help page for more
details of these statistics.

The statistics are:

• CVRsq See Section 10.5 Part (i).

• oof.rsq See Section 10.5 Part (ii).

• MaxErr Signed max absolute difference between the predicted and observed re-
sponse. This is the maximum of the absolute differences, multiplied by -1 if the
sign of the difference is negative. The “summary” MaxErr is the worst MaxErr

across folds.

• ClassRate (discrete responses only) Fraction of out-of-fold observations correctly
classified. For binary responses a decision threshold of 0.5 is used.

If we cross-validate a binomial or poisson model (specified using earth’s glm argument),
earth returns the following additional statistics:

• MeanDev Deviation divided by the number of observations.

• CalibInt, CalibSlope Calibration intercept and slope (from regressing the ob-
served response on the predicted response).

• AUC (Binomial models only) Area under the ROC curve.

• cor (Poisson models only) Correlation between the predicted and observed re-
sponse.

1We emphasize that summary.earth prints the deviation across folds, not the unknown deviation
across hypothetical samples. See Section 11.5 “Variance of cross-validation estimates”. It is easy to
confuse the two.
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For multiple response models, at each fold earth calculates these statistics for each
response independently, and combines them by taking their mean, or weighted mean if
the wp argument is used. Taking the mean is a rather dubious way of combining results
from what are essentially quite different models, but can nevertheless be useful.

Explanations of the above GLM statistics can be found in the following (and other)
references: Pearce and Ferrier [21], Fawcett [6], and Harrell [10]. See the source code in
earth.cv.lib.R for details of how the statistics are calculated, based on code kindly
made available by Jane Elith and John Leathwick.

10.8 An example: training versus generalization error

Figure 19 is reproduced from Figure 7.1 in Hastie et al. [12]. The figure was generated
from models built with 100 training sets generated synthetically.

Figure 20 is an example illustrating some of the same principles. Instead of using new
data, we use cross-validation. (Also, we use earth and the mtcars data.) The figure
was generated with the following code:

fit <- earth(mpg~., data=mtcars, ncross=10, nfold=2, keepxy=TRUE)

plot(fit, which=1,

col.mean.infold.rsq="blue", col.infold.rsq="lightblue",

col.grsq=0, col.rsq=0, col.vline=0, col.oof.vline=0)

Figure 20 is “upside down” with respect to Figure 19 because it plots model perfor-
mance, not lack-of-performance. But we still see the same basic structure: the perfor-
mance measured on the in-fold training data increases as we increase model complexity;
on independent data the performance peaks and then decreases.

The maximum mean out-of-fold R2 is at 3 terms, which in this example coincides with
the number of terms selected by the GCV of the full model (set col.grsq to see this,
not shown here).

10.8.1 Remarks

We mention first that several of the arguments in the call to plot.earth above simply
remove display elements. The defaults for these arguments are inappropriate for this
somewhat unusual plot (we aren’t usually interested in the in-fold R2s).

Note how variation of the pink lines increases with the number of terms. The more
flexible the model, the more it overfits to randomness in the training set, and thus more
randomness enters its estimation of R2 on independent data.

Much of the variation of the pink curves in Figure 20 is due to the relatively small size
of the out-of-fold datasets. If we measured R2 on a very large test set (instead of the
out-of-fold data) we would still see variation, but much less.

For each pink curve, we would see more variation if we used genuinely independent
training sets (rather than the pseudo-independent cross-validation fold data).
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Figure 19: Reproduced from
Figure 7.1 of Hastie et al. [12]

For models built from a
100 training sets, the pale
blue lines show the prediction
error measured on the training
set. The pink lines show the
error measured on a very large
independent test set.

The thick lines average the
pale lines to show the expected
error.
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Figure 20: Cross-validation of
an earth model on the mtcars

data.

The Model Complexity along
the horizontal axis in the figure
above becomes the Number of
Terms in this figure.

The mtcars dataset is small (32 observations). Only two folds were used above (but
repeated 10 times with ncross) to keep the out-of-fold sets large enough for somewhat
stable results. With this small nfold, cross-validation bias may be an issue, because of
the small size of the in-fold sets relative to the full dataset. So the R2 on the out-of-fold
data will tend to be smaller than it would be across full-sized independent samples. See
Section 11.4 “Bias of cross-validation estimates”.

For a nice illustrative graph we used degree=1, but for the mtcars data a higher degree
is actually more appropriate.
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11 Understanding cross-validation

This chapter tries to clarify some aspects of cross-validation. It was written in response
to email about cross-validating earth models. The chapter is mostly a general discus-
sion, not limited to earth models. The exposition takes a frequentist approach, using
arguments based on hypothetical situations where we have access to extra data.

For a description of cross-validation, see for example Hastie et al. [12], Section 7.10,
Duda et al. [4] Section 9.6, or even Wikipedia
http://en.wikipedia.org/wiki/Cross-validation_(statistics).
An in-depth reference is Arlot and Celisse [1].

11.1 Datasets for measuring performance

In the next section we will discuss some common cross-validation mistakes. But first we
review some aspects of measuring a model’s performance, and the datasets needed to do
that. Understanding the role of these datasets is important for applying cross-validation
correctly.

Typically we want to measure our model’s generalization performance, and so want
to measure prediction error on new data, i.e., not on the training data. (If that isn’t
immediately obvious, see FAQ 13.7.) We typically want to measure performance in two
scenarios:

(a) For parameter selection, i.e., to choose certain key model parameters during
the model building process. For example, for earth models we need to select the
best number of terms (so the parameter here is the number of terms). Another
example is rpart trees, where we need to choose the optimum tree size. The new
data are used as parameter-selection data, also commonly called model-selection or
validation data.

(b) For model assessment, i.e., to measure the performance of the final model. Here
the new data are used as test data.

We thus require three independent datasets:

(i) the training data,

(ii) the parameter-selection data for (a) above,

(iii) the test data for (b) above.

The ideal way to meet these requirements is to actually have large amounts of new data
drawn from the same population. Usually we don’t actually have access to such data,
and so must resort to other techniques.

One such technique is the GCV used when building MARS models, which bypasses the
need for model-selection data by using a formula to approximate the RSS that would
be measured on new data.

Another technique, more universal, is cross-validation. Depending on how it is used,
cross-validation can emulate either the parameter-selection or test data.

46

http://en.wikipedia.org/wiki/Cross-validation_(statistics)


A note on linear models. Many of us started learning about statistical modeling by
studying linear models. It’s reasonable to ask why we don’t bother with all the above
datasets with linear models. The answer is that linear models are relatively inflexi-
ble, and with these simple models the difference between the performance measured
on the training data and on independent test data is inconsequential, provided certain
assumptions are met. So we don’t need a separate test set. Additionally, when build-
ing a linear model there is no separate parameter-selection step, so we don’t need a
parameter-selection set. This will no longer be true if we adopt a more flexible model-
ing procedure. For example, if we are doing variable selection for a linear model (or if
we have a large number of possibly irrelevant variables), we should measure R2 on data
that is independent of the training data, or adjust R2 as if we had such data (by using
measures such as the AIC). With more flexible models overfitting becomes more likely,
since a flexible model can adapt to the peculiarities of the training data.

11.2 Common cross-validation mistakes

In this section we list some mistakes that are easy to make when cross-validating. All
of these make the model’s performance seem better than it is. Given how easy it is to
make these mistakes, a certain amount of skepticism is warranted when papers present
final model assessment statistics based on cross-validation.

Independence of observations

The out-of-fold data must play the role of new data. It’s thus important that it out-
of-fold data isn’t “contaminated” by the in-fold training data. This implies that the
observations must be independent.

Lack of independence means that the in-fold data used for training are partially dupli-
cated in some sense in the out-of-fold data used for testing, and cross-validation will
tend to give optimistic fits. At a minimum, we should avoid “twinned” observations.

Pre-tuning

Don’t use a set of data for selecting model parameters, then use the same data for
subsequent cross-validation of the model. Cross-validation must be applied to the
entire model building process. Any parameter that is tuned to the training data must
not be tuned before cross-validation begins.

A word of explanation on the above paragraph. Let’s say we do in fact optimize a
parameter to the full dataset before cross-validation begins. By doing so, we are also to
some extent optimizing to the out-of-fold data used during cross-validation (because the
out-of-fold data are, after all, drawn from the full data). The out-of-fold data are thus
contaminated and can no longer legitimately play the role of independent test data,
and performance measured on the out-of-fold data will appear better than it should.

There are however contexts where it’s acceptable to make decisions before cross val-
idation. Decisions that are made independently of the training data are acceptable.
Decisions about which variables to include that are made independently of the re-
sponse are acceptable. See the comments near the end of Section 7.10.2 in Hastie et
al. [12].
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Confusing parameter-selection fitness with final test fitness

If fits obtained by cross-validation are used to select a model’s parameters, then the
final test fit quoted for the selected model must be recalculated for that model using
a new set of independent data. The cross-validation fit used when selecting the model
cannot be quoted as the fitness for that model—that would be optimizing for the test
set by conflating the parameter-selection and test data.

11.3 What does cross-validation measure?

The mechanics of cross-validation are easy to understand. Understanding what cross-
validation actually estimates involves some subtleties, and the rest of this chapter is
somewhat technical.

Cross-validation estimates “average” not “conditional” error

Cross-validation doesn’t really estimate the generalization performance of our model,
built on a single set of data (which is usually what we want to know when applying a
modeling technique like earth). Instead, cross-validation approximates the performance
of our model building algorithm on a range of training sets. It approximates the average
performance we would see in a hypothetical scenario where we build many models, each
on a fresh sample of training data of approximately the same size as the original sample,
and measure the performance of each of those models on independent test data (all data
being i.i.d. from the same population).

In other words, cross-validation is better at estimating the expected prediction error
across training sets, not the prediction error conditional on the training data we have
at hand. In Figure 19 on page 45, our model is one pink line but cross-validation
approximates the solid red line. See also Hastie et al. [12] Section 7.12 “Conditional or
Expected Test Error?”

Some details. Cross-validation differs from the hypothetical scenario above because in
cross-validation the training (in-fold) sets share observations and aren’t as varied as
they would be in the hypothetical scenario. Also, the training set of a fold incorporates
test sets from other folds. This induces a relationship between the residual errors (or
whatever is used to measure performance) across folds, particularly in the presence of
outliers.

Expected value of R2 across models

Consider the hypothetical scenario above, and let us measure performance as R2 on
an independent test set: for each model we draw a training set from the population,
and also draw a test set from the population to measure R2. If we built many models
and took the average R2 over all the models, we would eventually close in on a stable
average R2 value.

This average R2 would be the same regardless of the size of the test sets, assuming
we repeated the experiment enough times. In other words, the expected value of R2

across models doesn’t depend on the size of the test sets — but the variance of the R2s
certainly does, which leads to the next section.
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Variance of R2 across models

Once we have an estimate of the generalization performance of the model (such as R2

on independent data), we typically want to know the stability of that estimate, usually
expressed as the variance of the estimate.

Typically we want to know how our estimated R2 would be expected to change if we
had a different training set — the sampling variance of R2. This is the variance we
would measure across models in the hypothetical scenario above if the test sets were
extremely large (so all variation is due to the training sets, not the test sets).

On the other hand, if the test sets are small, the variance of R2 will include extra
variation due to the small size of the test sets. This is the scenario emulated by cross-
validation. So in cross-validation, it isn’t possible in general to disentangle the variabil-
ity due to the in-fold training sets and the variability due to the small out-of-fold test
sets.

11.4 Bias of cross-validation estimates

Cross-validation tries to establish the quality of a model built on the full sample by
using models built on smaller subsets of the sample (often 4/5 or 9/10 of the sample).
Generally a model built with a subset will be “worse” than a model built with the full
sample. Thus the cross-validation R2 will tend to be lower than it should be1. That is,

1The Cross-validation R2 here is the mean of the R2 of each fold, each measured on the out-of-fold
data. It is the CVRsq printed by summary.earth.
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the cross-validation R2 is conservatively biased.

To see where the model sits on the learning curve (Figure 7.8 in Hastie et al. [12]),
one technique for earth models is to plot the GRSq of models built with different sized
subsets of the sample, and average out variation by repeating several times. Figure 21
gives an example, produced by the following R code. (You can ignore the code and just
look at the figure.)

learning.curve <- function(data, func, field="grsq", ncurves=30)

{

# set up the plot (call func on full data to establish ylim)

body <- body(func) # needed only for the plot title

plot(0, xlim=c(0,1), ylim=c(0, 1.2 * func(data)[[field]]), type="n",

xlab="fraction of data", ylab=field, cex.main=1.1, xpd=NA,

main=paste("estimated learning curve\n",

substr(paste(deparse(substitute(body)), collapse=""), 1, 40)))

grid(col="linen", lty=1)

all.results <- rep(0, 10)

for(curve in 1:ncurves) { # for each gray line

sample <- sample.int(nrow(data))

results <- double(10)

for(fold in 1:10) {

sub.data <- data[sample[1:(fold * nrow(data) / 10)],]

results[fold] <- func(sub.data)[[field]]

}

lines((1:10)/10, results, col="gray") # one gray line

all.results <- all.results + results

}

lines((1:10)/10, all.results / ncurves, lwd=2) # the mean line

}

learning.curve(etitanic,

function(data) earth(pclass~., data, degree=2))

From the figure, the bias is small enough with 10 folds (the curve is flat enough with
90% of the data).

Remember that this is just an estimated learning curve because it is created from a
single training sample. Ideally we would like to estimate the learning curve using many
fresh training sets. If we did that, we would see variation in the curves on the far right
of graph which we don’t see in Figure 21. So even with nfold=5 the bias is acceptably
small, relative to the (unknown) variance.

11.5 Variance of cross-validation estimates

Cross-validation bias seems to be much discussed, but usually a more serious problem
with cross-validation is the variance of cross-validation estimates across samples, and
our inability to estimate this variance. How much would we expect the cross-validation
R2 (averaged across folds) to change if we used a different training sample? (The new
sample would be of the same size and drawn from the same population as the original.)
It isn’t much comfort to know that the expected value of a an estimate is correct up to
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small bias, if the single estimate we have at hand could be far from that expected value
because of estimation variance.

Quantifying the variance of cross-validation statistics in general is an ongoing research
problem (see Bengio and Grandvalet [2] for an explanation of some of the difficulties
involved). Unfortunately it isn’t really possible to estimate the variance of the cross-
validation R2 of earth models.

An indication is given by the variance of the CVR2 across folds (printed by summary.earth
as a standard deviation). However, this variance includes extra variability because we
are looking at the R2 per fold instead of the mean R2 across folds. On the other hand, it
incorporates less variability due to training sets than if we actually used fresh training
data at each fold. Also it is unstable because of the small size of the out-of-fold test
sets (the variance of the variance is high).

For earth models, another indication is the variance of GRSq in the estimated learning
curve (Figure 21). Assuming GRSq is an acceptable surrogate for R2 on independent
data, the variance across the gray curves gives an approximate lower bound of R2

variance across models for variously sized training sets. We say “lower bound” because
the estimated learning curve is created from only a single training set (if we used fresh
data for each model the variance at the right of the curve wouldn’t taper to zero).
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12 Estimating variable importance

This chapter discusses how to estimate the relative importance of variables in an earth
model.

12.1 Introduction to variable importance

What exactly is variable importance? A working definition is that a variable’s impor-
tance is a measure of the strength of the relationship between observed values of the
variable and the observed response. It is this measure of importance that the evimp

function tries to estimate.

You might say that we can measure a variable’s importance by changing the variable’s
value and measuring how the response changes. Indeed, the fact that an earth model is
represented by an equation seems to imply that this is the way to go. However, except
in special situations, there are problems with this way of thinking because:

(i) It assumes we can change the variable, which usually isn’t the case. For example,
in the trees data, we cannot simply generate a new tree of arbitrary height.

(ii) It assumes that changes to a variable can occur in isolation. In practice, a variable
is usually tied to other variables, and a change to the variable would never occur in
the population without simultaneous changes to other variables. For example, in the
trees data, a change in a tree’s height is associated with a change in the tree’s girth.

(iii) It implies a causal relationship, which often isn’t the case. Changing the amount
of mud doesn’t tell us anything about the amount of rain.

Thus it’s better to think in terms of the effect of the variable on the response averaged
over the entire population. That is to say, the expected effect. In practice, we have
to figure out how to use the model and the sample as a surrogate for the population,
which isn’t trivial.

Note that variable importance in the equation that MARS derives from the data isn’t
really what we have in mind here. For example, if two variables are highly correlated,
MARS will usually drop one when building the model. Both variables have the same
importance in the data but not in the MARS equation (one variable doesn’t even appear
in the equation). Section 12.5 has a few words on how to use plotmo to estimate variable
importance in the MARS equation.

12.2 Estimating variable importance

Estimating predictor importance is in general a tricky and even controversial problem.
There is usually no completely reliable way to estimate the importance of the variables
in a standard MARS model. The evimp function just makes an educated (and in
practice useful) estimate as described below.
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12.3 Three criteria for estimating variable importance

The evimp functions uses three criteria for estimating variable importance in a MARS
model.

(i) The nsubsets criterion counts the number of model subsets that include the variable.
Variables that are included in more subsets are considered more important. This is the
criterion used by summary.earth to print variable importance.

By ”subsets” we mean the subsets of terms generated by earth’s backward pass. There
is one subset for each model size (from 1 to the size of the selected model) and the
subset is the best set of terms for that model size. (These subsets are specified in
$prune.terms in earth’s return value.) Only subsets that are smaller than or equal in
size to the final model are used for estimating variable importance.

(ii) The rss criterion first calculates the decrease in the RSS for each subset relative
to the previous subset during earth’s backward pass. (For multiple response models,
RSS’s are calculated over all responses.) Then for each variable it sums these decreases
over all subsets that include the variable. Finally, for ease of interpretation the summed
decreases are scaled so the largest summed decrease is 100. Variables which cause larger
net decreases in the RSS are considered more important.

(iii) The gcv criterion is the same, but uses the GCV instead of the RSS. Note that
adding a variable can sometimes increase the GCV. (Adding the variable has a dele-
terious effect on the model, as measured in terms of its estimated predictive power on
unseen data.) If that happens often enough, the variable can have a negative total
importance, and thus appear less important than unused variables.

Note that using RSq’s and GRSq’s instead of RSS’s and GCV’s would give identical
estimates of variable importance, because evimp calculates relative importances.

12.4 Example

This code

earth.model <- earth(O3 ~ ., data=ozone1, degree=2)

evimp(earth.model, trim=FALSE) # trim=FALSE to show unused variables

prints the following (your version of earth may give slightly different results):

nsubsets gcv rss

temp 11 100.0 100.0

humidity 9 35.7 38.9

ibt 9 35.7 38.9

doy 8 33.7 36.5

dpg 6 26.2 28.7

ibh 5 31.1> 33.0>

vis 5 21.2 23.9

wind 2 9.3 11.9

vh-unused 0 0.0 0.0
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The rows are sorted on nsubsets. We see that temp is considered the most important
variable, followed by humidity, and so on. We see that vh is unused in the final model,
and thus is given an unused suffix. (Unused variable are printed here because we passed
trim=FALSE to evimp. Normally they are omitted from the print.)

The nsubsets column is the number of subsets that included the corresponding variable.
For example, temp appears in 11 subsets and humidity in 9.

The gcv and rss columns are normalized so the largest net decrease is 100.

A “>” is printed after gcv and rss entries that increase instead of decreasing (i.e.,
the ranking disagrees with the nsubsets ranking). We see that ibh is considered less
important than dpg using the nsubsets criterion, but not with the gcv and rss criteria.

12.5 Estimating variable importance in the MARS equation

Running plotmo gives an idea of which predictors in the MARS equation make the
largest changes to the predicted value (but only with all other predictors at their median
values).

Note that there is only a loose relationship between variable importance in the MARS
equation and variable importance in the data (Section 12.1).

12.6 Using drop1 to estimate variable importance

As an alternative to evimp, we can use the drop1 function in the standard stats

package. (To do this, we must build the earth model using the formula interface, not
the x,y interface.) Calling drop1(earth.model) will delete each predictor in turn from
the model, rebuild the model from scratch each time, and calculate the GCV each time.
We will get warnings that the earth library function extractAIC.earth is returning
GCVs instead of AICs — but that is what we want so we can ignore the warnings.
(Turn off just those warnings by passing warn=FALSE to drop1.) The column labeled
AIC in the printed response from drop1 will actually be a column of GCVs not AICs.
The Df column isn’t much use in this context.

Remember that this technique only tells us how important a variable is with the other
variables already in the model. It doesn’t tell us the effect of a variable in isolation.

We will get lots of output from drop1 if we built the original earth model with trace>0.
We can set trace=0 by updating the model before calling drop1. Do it like this:
earth.model <- update(earth.model, trace=0).

12.7 Estimating variable importance by building many models

The variance of the variable importances estimated from an earth model can be high
(meaning that the estimates of variable importance in a model built with a different
realization of the data would be different).

54



This variance can be partially averaged out by building a bagged earth model and
take the mean of the variable importances in the many earth models that make up the
bagged model. You can do this easily using the functions bagEarth and varImp in Max
Kuhn’s caret package [14].

Measuring variable importance using Random Forests is another way to go, indepen-
dently of earth. See the functions randomForest and importance in the randomForest
package.

12.8 Remarks on evimp

The evimp function is useful in practice but the following issues can make it misleading.

Collinear (or otherwise related) variables can mask each other’s importance, just as in
linear models. This means that if two predictors are closely related, the earth model
building algorithm will somewhat arbitrarily choose one over the other. The chosen
predictor will incorrectly appear more important.

For interaction terms, each variable gets credit for the entire term — thus interaction
terms are counted more than once and get a total higher weighting than additive terms
(questionably). Each variable gets equal credit in interaction terms even though one
variable in that term may be far more important than the other.

MARS models can sometimes have a high variance — if the data change a little, the set
of basis terms generated by the forward pass can change a lot. So estimates of predictor
importance can be unreliable because they can vary with different training data.

For factor predictors, importances are estimated on a per-level basis (because earth
splits factors into indicator columns, essentially treating each level as a separate vari-
able). The evimp function should have an option to aggregate the importances over all
levels, but that hasn’t yet been implemented.

TODO Enhance evimp to use cross-validation statistics when available.
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13 FAQ

13.1 What are your plans for earth?

Support of NAs would be good.

Multicore support would make earth significantly faster.

The weights argument makes earth very slow with big models.

The variance model code could be factored out of earth into its own package, allowing
prediction intervals for “any” model.

13.2 How do I cite the earth package?

Cite the earth package like this:

S. Milborrow. Derived from mda:mars by T. Hastie and R. Tibshirani.
earth: Multivariate Adaptive Regression Splines, 2011. R package.

The following BibTex entry does the trick. The extra curly braces in the author field
are necessary to get BibTex to order the entry correctly on the last name of the first
author. The url field is optional.

@Manual{earthpackage,

title = {earth: Multivariate Adaptive Regression Splines},

author = {S. {Milborrow. Derived from mda:mars by T. Hastie and R. Tibshirani.}},

year = {2018},

note = {R package},

url = {\url{https://CRAN.R-project.org/package=earth }}

}

From within R you can use the following (but you will have to massage the results to
get BibTex to order the entry correctly, because of the unusual author field):

> library(earth)

> citation("earth")

13.3 What are the limits on earth model size?

As an example, the earth test suite has additive models with 8 million cases and 100
variables, and 80 million cases and 2 variables. Bigger models are possible. See Sec-
tion 2.7.

13.4 Can I use earth with a binary response?

Yes. Typically you want to predict a probability. Usually the best way to proceed is:
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(i) Convert your binary response to a logical, if it isn’t that already. To do the
conversion, you can use code like this:

data$response <- data$response == "survived"

Actually, you don’t necessarily have to do that. Although a response of type
logical is canonical in this situation, if you prefer you could also use a two-level
factor or a 1s-and-0s response. Earth doesn’t mind.

(ii) Include glm=list(family=binomial)) in your call to earth. This tells earth to
build a model that estimates response probabilities.

See Section 4.1(i) for an example, and the rest of that chapter for details.

13.5 Can I use earth with a categorical response?

Yes. If your response has only two categories (it’s binary) please see the above FAQ.

If your response has more than two levels, make sure your response is an unordered R
factor. For an example, see Section 4.1(ii), and the rest of that chapter for details.

Before handing it to its internal engine, earth will expand your response to multiple
columns (an indicator column for each factor level) and build a multiple-response model.
This is described in Chapter 5.

13.6 What is a GCV, in simple terms?

GCVs are important for MARS because the backward pass uses GCVs to evaluate
model subsets.

Usually when testing a model (not necessarily a MARS model) we want to test general-
ization performance, and so want to measure error on independent data, i.e., not on the
training data. Often a decent set of independent data is unavailable and so we resort
to cross-validation or leave-one-out methods. But that introduces other complications
and can be painfully slow. As an alternative, for certain forms of model we can use a
formula to approximate the error that would be determined by leave-one-out validation
— that approximation is the GCV. The formula adjusts (i.e., increases) the training
RSS to take into account the flexibility of the model.

Summarizing, the GCV approximates the RSS (divided by the number of cases) that
would be measured on independent data. Even when the approximation isn’t that good,
it is usually good enough for comparing models during the backward pass.

The GRSq measure used in the earth package standardizes the raw GCV, in the same
way that R2 standardizes the RSS (FAQ 13.11).

GCVs were introduced by Craven and Wahba [3], and extended by Friedman and Sil-
verman [7,9]. See Hastie et al. [12], Section 7.10 “Cross-Validation”, and the Friedman
MARS paper [7]. GCV stands for “Generalized Cross Validation”, a perhaps misleading
term. because no cross-validation is actually performed.
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13.7 If GCVs are so important, why don’t linear models use
them?

First a few words about overfitting. An overfit model fits the training data well but
won’t give good predictions on new data. The idea is that the training data capture
the underlying structure in the system being modeled, plus noise. We want to model
the underlying structure and ignore the noise. An overfit model models the specific
realization of noise in the training data and is thus too specific to that training data.

The more flexible a model, the more its propensity to overfit the training data. Linear
models are constrained, with usually only a few parameters (viz. the intercept and
regression coefficients) and don’t have the tendency to overfit like more flexible models
such as MARS. This means that for linear models, the RSS on the data used to build
the model is usually an adequate measure of generalization ability, and we don’t need
GCVs.

This is no longer true if we do automatic variable selection on linear models (or if we
have a large number of possibly irrelevant variables), because the process of selecting
variables increases the flexibility of the model. Hence the AIC — as used in, say,
drop1. The GCV, AIC, and friends are means to the same end. Depending on what
information is available during model building. we use one of these statistics to estimate
model generalization performance for the purpose of selecting a model.

13.8 How do I get p values for earth model coefficients?

You can’t get meaningful p values for MARS models. If the GRSq is satisfactory, we can
have reasonable confidence in the model as a whole, but we cannot assign confidence
levels to parts of the model in isolation. You may suppose you can with something like
this

earth.model <- earth(y~x) # standard earth model

lm.model <- lm(y~earth.model$bx) # linear regression on its basis matrix

summary(lm.model) # prints p values

That will indeed print p values, but they are meaningless (except to confirm that the
MARS algorithm works). The p values and standard errors will be small (assuming
reasonable data), indicating that all the terms are important. This is a self-fulfilling
prophecy: if the terms weren’t important, the MARS algorithm wouldn’t have included
them in the model.

The summary printed by summary.lm assumes that the terms are pre-defined. It ignores
the uncertainty in the selection of the terms, and doesn’t discount that uncertainty when
printing the p values.

Put another way, the null hypothesis in summary.lm for each term is essentially that
the term is unimportant — but the MARS algorithm selects only meaningful terms, so
the p values returned by summary.lm will always be small.
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Figure 22: Prediction intervals on
an earth model, produced with the
following code:

mod <- earth(O3~temp, data=ozone1,

nfold=10, ncross=30,

varmod.method="lm")

plotmo(mod, pt.col=1, level=.95)

13.9 Can I get confidence intervals on my predictions?

Yes, prediction intervals are available for earth models. Use the varmod.method argu-
ment (Figure 22).

Getting plausible intervals may require a bit of work. Please see the vignette “Variance
models in earth”. I suggest you start off with varmod.method="lm" and see if that gives
you plausible results — plot the model and check the prediction bands in the residual
plot.

Note however that confidence levels on the earth coefficients are not available (FAQ 13.8).

13.10 Can R2 be negative?

Yes, R2 (rsq) can sometimes be negative when both the following are true:

(i) the test set is not the training set (for example, in cross-validation), and,

(ii) we use the general definition of R2

rsq = 1 - rss / tss,

where rss = sum((y - yhat)^2) is the residual sum-of-squares and
tss = sum((y - mean(y))^2) is the total sum-of-squares. This is the definition
used in the earth code (there are a few other definitions, further discussion later
in this section).

The simplest example where we see an negative R2 is an intercept-only model. (An
intercept-only model always predicts a constant value, the mean of the training data
response.) An intercept-only model will give a negative R2 on test data, unless the
training data and test data happen to have the same mean. Why is this? On the
test data, the intercept-only model predicts, as always, the mean of the training data.
Thus on the test data the residuals will be greater on the whole than if we predicted
the mean of the test data.1 That is another way of saying that on the test data the
residual sum-of-squares will be greater than the total sum-of-squares, and rsq = 1 -

1Recall that
∑

i
(xi − µ)2 is minimized when µ is the mean of the xi’s.
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rss / tss will be negative. Examples can be seen in the left of Figure 20 on page 45
(the pink lines are below zero in that region of the plot).

There is actually more than one definition of R2. You may be more familiar with the
definition

rsq = regression.sum.of.squares / tss

which is indeed always non-negative. With R2 measured on the training data, the
definitions are equivalent for linear regression (with an intercept) and for earth models.
But the definition of R2 used by earth generalizes more easily for measuring performance
on data not in the training set, and for measures like the GRSq.

The “squared” in “R-Squared” is misleading in that it implies a non-negative value.
Perhaps we should use the alternative term “coefficient of determination”, but “R-
Squared” is common.

13.11 Can GRSq be negative?

Yes. The statistic GRSq is earth’s estimate of the generalization performance of the
model. It is defined, analogously to R2 (FAQ 13.10), as

GRSq = 1 - GCV / GCV.null,

where GCV.null is the GCV of an intercept-only model.

A negative GRSq indicates a severely over-parameterized model — a model that wouldn’t
generalize well, even though it may be a good fit to the training data. During earth
model building, GRSq can become negative. However, after the backward pass the model
will end up with a non-negative GRSq.

Adding a term to the model will always increase the R2 on the training data (up to
the limits of numerical accuracy). But adding that term could reduce the estimated
predictive power of the model on new data, and would thus decrease the GCV, and thus
also GRSq. (We see that happening for later terms in almost any earth model Selection
graph.) Decrease GRSq often enough and it will eventually become negative. Watch the
GRSq take a nose dive in this example (Figure 23):
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Figure 23: Negative GRSq’s.

After term 3, adding a term
reduces the estimated predictive
power of the model, apart from
term 7. By term 14 the GRSq is
negative.

The R2 on the training data
always increases as earth adds
terms (dashed line).
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fit <- earth(mpg~., data=mtcars, trace=4)

plot(fit, which=1, col.npreds=0, xlim=c(0,14),

col.sel.grid="linen", legend.pos="bottomleft")

In severe cases, GRSq might even be set to -Inf, which brings us to the following FAQ.

13.12 Why does “Termination condition: GRSq -Inf” mean?

It’s not something to especially worry about. It means that the forward pass stopped
adding terms because the GRSq got so bad that it was pointless to continue. It’s similar
to Termination condition: GRSq -10 (Section 3 iv) except that the GRSq was even
worse than -10. After the backward pass, GRSq will be non-negative.

Some details. Earth sets the GCV to Inf during model building if the effective number
of parameters is greater than the number of observations. Under these conditions, the
GCV no longer approximates the leave-one-out RSS. To see this, consider the formula
for the GCV

GCV = RSS / (n * (1 - nparams / n)^2))

where n is the number of observations. From the formula we see that the GCV increases
and then decreases if nparams / n approaches and then exceeds 1 as terms are added
to the model. To prevent this undesirable non-monotonic behavior, if nparams / n

>= 1 then earth doesn’t use the formula but instead directly sets the GCV to Inf.

13.13 How is the default number of terms nk calculated?

The default nk is

nk = min(200, max(20, 2 * ncol(x))) + 1

In words: this doubles the number of predictors, forces that into the range of 20 to 200,
and finally adds 1 for the intercept.

The numbers 20 and 200 are fairly arbitrary. The lower limit of 20 seems reasonable for
situations where we have just a few predictors. The upper limit of 200 helps prevent
excessive memory use in the forward pass. Typically we will reach one of the termination
conditions long before we reach 200 terms. (The termination conditions are described
in Chapter 3 “Termination conditions for the forward pass”.)

13.14 Why do I get fewer terms than nk, even
with pmethod="none"?

There are several conditions that can terminate the forward pass, and reaching nk is
just one of them. See Chapter 3 “Termination conditions for the forward pass”. The
various stopping conditions mean that the actual number of terms generated by the
forward pass will usually be less than a big nk.

There are other reasons why the actual number of terms may be less than nk:
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(i) The forward pass discards one side of a term pair if it adds nothing to the model
— but the forward pass counts terms as if they were actually created in pairs. To see
this behavior, run earth with trace=2 or higher. You will see in the Terms column that
although earth usually adds two terms it will sometimes add just one.

(ii) As a final step (just before the backward pass), the forward pass deletes linearly
dependent terms, if any, so all terms in dirs and cuts are independent. If this hap-
pens and tracing is enabled you will get a message like Fixed rank deficient bx by

removing 3 terms.

And remember that the backward pass will usually discard further terms unless pmethod="none".

13.15 Why do I get fewer terms than my specified nprune?

The backward pass selects a model with the lowest GCV that has nprune or fewer
terms. Thus the nprune argument specifies the maximum number of permissible terms
in the final pruned model.

You can work around this to get exactly nprune terms by specifying penalty=-1. An
example:

earth(Volume ~ ., data=trees, trace=3, nprune=3, penalty=-1)

This special value of penalty causes earth to set the GCV to RSS/nrow(x). Since
the RSS on the training set always decreases with more terms, the backward pass will
choose the maximum allowable number of terms.

13.16 Is it best to hold down model size with nk or nprune?

If you want a smaller model than that built by default, it’s usually best to generate a
big set of basis functions in the forward pass (by specifying a big nk) and prune these
back (by specifying a small nprune). This is generally better than directly building
a small model by specifying a small nk — the backward pass can choose any of the
available terms to include, whereas the forward pass can only see one term ahead.

13.17 Which predictors are used in the model?

The following function will give a list of predictors in the model:

get.used.pred.names <- function(obj) # obj is an earth object

{

any1 <- function(x) any(x != 0) # like any but no warning if x is double

names(which(apply(obj$dirs[obj$selected.terms, , drop=FALSE], 2, any1)))

}
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13.18 Which predictors were added to the model first?

You can see the forward pass adding terms with trace=2 or higher. But remember,
the backward pass will usually remove some of the terms. You can also use

summary(earth.model, decomp="none")

which will list the terms remaining after the backward pass, in the order they were
added by the forward pass.

It should be remarked that the order in which terms or predictors are added by the
forward pass isn’t necessarily indicative of their relative importance.

13.19 summary.earth lists predictors with weird names that
aren’t in x. What gives?

You probably have factors in your x matrix, and earth is applying contrasts. See
Chapter 5 “Factors (categorical variables)”.

13.20 How does summary.earth order terms?

With decomp="none", the terms are ordered as generated by the forward pass.

With the default decomp="anova", the terms are ordered as follows:

(i) terms are sorted first on degree of interaction

(ii) then terms with a linear factor before standard terms

(iii) then on the predictors (in the order of the columns in the input matrix)

(iv) then on increasing knot values

(v) and finally, within term pairs the term for “predictor less than hinge” is placed
before the term for “predictor greater than hinge” (so for example, h(16-Girth)
is before h(Girth-16)).

The reordering is done by the function reorder.earth.

13.21 How do I train on one set of data and test on another?

The example below demonstrates one way to train on 80% of the data and test on the
remaining 20%.

train.subset <- sort(sample(1:nrow(trees), .8 * nrow(trees)))

test.subset <- (1:nrow(trees))[-train.subset]

earth.model <- earth(Volume ~ ., data = trees[train.subset,])

# print R-Squared on the test data

print(summary(earth.model, newdata=trees[test.subset,]))
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# manually calculate R-Squared on the test data (same as above call to summary)

yhat <- predict(earth.model, newdata = trees[test.subset,])

y <- trees$Volume[test.subset]

print(1 - sum((y - yhat)^2) / sum((y - mean(y))^2)) # print R-Squared

In practice a dataset larger than the one in the example should be used for splitting.
The model variance is too high with this small set — run the example a few times to
see how the model changes as sample splits the dataset differently on each run.

Also, remember that the test set shouldn’t be used for parameter tuning because you will
be optimizing for the test set (Section 11.1). Instead use GCVs, separate parameter-
selection sets, or techniques such as cross-validation with earth’s nfold parameter.
(Cross-validation repeats the process in the above code five or ten times, using a different
subset each time).

13.22 Why is plot.earth not showing the cross-validation data?

Use keepxy=TRUE in the call to earth (as well as nfold). See Section 10.3.

13.23 How do I add a plot to an existing page with plot.earth

or plotmo?

Use do.par = FALSE, otherwise these plotting functions start a new page.

13.24 What about bagging MARS?

The caret package [14] provides functions for bagging earth (and for parameter selec-
tion). Our personal experience has been that bagging MARS doesn’t give models with
better predictive ability (probably because the MARS algorithm is fairly stable in the
presence of perturbations of the data, and bagging works best for “unstable” models).
Your mileage may vary (we would be interested if it does). We tested just a couple of
datasets, but did try a few different approaches, including using a modified version of
earth that randomized the set of variables available at each forward step to increase
variability (similar to random forests).

13.25 Why do I get Warning: glm.fit: fitted probabilities

numerically 0 or 1 occurred?

You will only see this warning when using earth’s glm argument. You can safely ignore
the warning in an earth context. The GLM coefficients for the model terms may be
very large, but it doesn’t matter — the predictive ability of the model is unimpaired.

The warning is issued when glm.fit generates a model that perfectly separates the
classes in the training data. A perfect fit is usually considered a good thing, not
something that should cause a warning. However, the warning is issued because certain
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model statistics (such as the t-values) generated by the mathematics inside glm.fit

will be unreliable for subsequent inference on the model. That doesn’t matter in an
earth context, because earth doesn’t use those statistics. (And, anyway, the t-values are
meaningless even when the warning isn’t issued, because of the amount of processing
done by earth to generate the terms before it calls glm.fit, FAQ 13.8.)

The warning message is more likely to occur during cross-validation (using earth’s nfold
parameter). With cross-validation we are looking at more, and smaller, datasets, so
the chance of a perfectly separable set is more likely. If the warning is issued, the
coefficients for the terms of the fold model may be very large, but they aren’t used
in the final model anyway. The cross-validation statistics calculated by earth (such as
CVRsq) remain valid.

Note added Dec 2014: Andrew Gelman gives an example where this message is given
because of non-convergence of the glm algorithm. I believe this is rare in practice.
http://andrewgelman.com/2011/05/04/whassup_with_gl.

13.26 Why do I get Error: XHAUST returned error code -999?

The short answer: you should never see the above message (fixed in earth version 2.6-0).
If you do, please let us know.

One workaround is to change pmethod from "exhaustive" to "backward".

You can also try the following. These instructions work on the assumption that the
default value of Exhaustive.tol is too big for your dataset. First please read the
description of the Exhaustive.tol argument in the Arguments section of the earth
help page. Then run earth with trace=1, so earth prints the reciprocal of the condition
number of the earth basis matrix bx. (The condition number here is the ratio of largest
to the smallest singular value of bx.) Then set Exhaustive.tol to greater than the
printed value (something like Exhaustive.tol=1e-8), and run earth again. Now earth
will automatically change pmethod from "exhaustive" to "backward" when necessary
to avoid the above error message.

It must be said that it is hard to believe under these conditions that the resulting model
will be much good. The data don’t allow a decent predictive model to be built.

Some details. Certain data cause collinearity in the earth basis matrix bx which slips
by the usual checks. This causes the leaps routine to fail. The usual checks are:

(i) while building the basis matrix, the C code does a check to drop collinear terms
(BX TOL and QR TOL in the C code)

(ii) after building the basis matrix, the C code drops any remaining collinear terms
(RegressAndFix in the C code)

(iii) the leaps Fortran routine sing checks for collinearity.

Some data get through all these tests, probably because we are near the numerical
noise floor and numerical rounding is essentially changing the data randomly. When
pmethod="exhaustive", earth performs an SVD of bx, and as a last resort if the
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condition number is out-of-range forces pmethod from "exhaustive" to "backward".
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