
SPASS: Tutorial

Learn How to Use SPASS!

SPASS is an automated theorem prover for first-order logic with equality. So the input for the
prover is a first-order formula in our syntax. Running SPASS on such a formula results in the final
output SPASS beiseite: Proof found. if the formula is valid, SPASS beiseite: Completion
found. if the formula is not valid and because validity in first-order logic is undecidable, SPASS
may run forever without producing any final result.

Lets start a complete loop through the usage of SPASS. Starting point is always some problem you
want to solve. Assume that out of the two sentences

(1) Sokrates is a human.

(2) All humans are mortal.

you want to conclude

(3) Sokrates is mortal.

The first step is to formalize the problem in first-order logic. The formulae are

(1) Human(sokrates)

(2) x Human(x) Mortal(x)

(3) Mortal(sokrates)

where syntactically Human and Mortal are predicates while sokrates is a constant. The symbol
introduces universal quantification and material implication. The next step is to provide SPASS
an input file that contains exactly the above formulae in our syntax.

begin_problem(Sokrates1).

list_of_descriptions.
name({*Sokrates*}).
author({*Christoph Weidenbach*}).
status(unsatisfiable).
description({* Sokrates is mortal and since all humans are mortal, he is mortal too. *}).
end_of_list.

list_of_symbols.
 functions[(sokrates,0)].
 predicates[(Human,1),(Mortal,1)].
end_of_list.

list_of_formulae(axioms).

formula(Human(sokrates),1).

formula(forall([x],implies(Human(x),Mortal(x))),2).

end_of_list.

list_of_formulae(conjectures).

formula(Mortal(sokrates),3).

end_of_list.

end_problem.

An SPASS input file consists of three parts, a description part started with
list_of_descriptions., a part where the signature is declared starting with list_of_symbols.,
a part where all axioms are given, starting with list_of_formulae(axioms). and a final part
where all conjectures are presented, starting with list_of_formulae(conjectures).. Formulae
are introduced by formula(formula). and are always written in prefix notation. For further
details, see the syntax description. Then SPASS tries to prove that the conjunction of all axiom
formulae implies the disjunction of all conjectures.

You can copy the above input description for SPASS and paste it in our WebSPASS interface. The
result output will be (similar to)

--------------------------SPASS-START-----------------------------
Input Problem:
1[0:Inp] || -> Human(sokrates)*.
2[0:Inp] || Mortal(sokrates)* -> .
3[0:Inp] || Human(U) -> Mortal(U)*.
 This is a monadic Horn problem without equality.
 This is a problem that has, if any, a finite domain model.
 There are no function symbols.
 This is a problem that contains sort information.
 The conjecture is ground.
 The following monadic predicates have finite extensions: Human.
 Axiom clauses: 2 Conjecture clauses: 1
 Inferences: IEmS ISoR IORe
 Reductions: RFClR RBClR RObv RUnC RTaut RSST RSSi RFSub RBSub RCon
 Extras : Input Saturation, Always Selection, No Splitting, Full Reduction, Ratio: 5, FuncWeight: 1, VarWeight: 1
 Precedence: Mortal > Human > sokrates
 Ordering : KBO
Processed Problem:

Worked Off Clauses:

Usable Clauses:
1[0:Inp] || -> Human(sokrates)*.
2[0:Inp] || Mortal(sokrates)* -> .
3[0:Inp]Human(U) || -> Mortal(U)*.
SPASS V 1.0.0
SPASS beiseite: Proof found.
Problem: sokrates1.dfg
SPASS derived 1 clauses, backtracked 0 clauses and kept 4 clauses.
SPASS allocated 438 KBytes.
SPASS spent 0:00:00.12 on the problem.
 0:00:00.02 for the input.
 0:00:00.02 for the FLOTTER CNF translation.
 0:00:00.00 for inferences.
 0:00:00.00 for the backtracking.
 0:00:00.00 for the reduction.

--------------------------SPASS-STOP------------------------------

SPASS reads the input file and transforms the formulae into clause normal form, where the
conjecture(s) is negated, since SPASS is based on refutation. So the clauses

1[0:Inp] || -> Human(sokrates)*.
2[0:Inp] || Mortal(sokrates)* -> .
3[0:Inp] || Human(U) -> Mortal(U)*.

are our input clauses where variables where -> denotes implication, a * means that a literal is
maximal and negative literals left from || are monadic literals with a variable argument, treated by
the sort technology in SPASS. Next SPASS analyzes the problem and finds out that

 This is a monadic Horn problem without equality.
 This is a problem that has, if any, a finite domain model.
 There are no function symbols.
 This is a problem that contains sort information.
 The conjecture is ground.
 The following monadic predicates have finite extensions: Human.
 Axiom clauses: 2 Conjecture clauses: 1

Based on this information SPASS decides to use the settings

 Inferences: IEmS ISoR IORe
 Reductions: RFClR RBClR RObv RUnC RTaut RSST RSSi RFSub RBSub RCon
 Extras : Input Saturation, Always Selection, No Splitting, Full Reduction, Ratio: 5, FuncWeight: 1, VarWeight: 1
 Precedence: Mortal > Human > sokrates
 Ordering : KBO

where he decides to enable the sort inference rules empty sort (IEmS) and sort resolution (ISoR) and
also ordered resolution (IORe). Reductions are forward and backward clause reduction (RFClR
RBClR), obvious reductions (RObv), unit conflict (RUnC), syntactic tautology deletion (RTaut), static
soft typing (RSST), sort simplification (RSSi), forward and backward subsumption (RFSub RBSub)
and condensation (RCon). SPASS chooses the Knuth-Bendix ordering (KBO) with precedence
Mortal > Human > sokrates.

For such a simple example, SPASS already finds the proof by input saturation/reduction, hence it
does not output any given clauses.

Usable Clauses:
1[0:Inp] || -> Human(sokrates)*.
2[0:Inp] || Mortal(sokrates)* -> .
3[0:Inp]Human(U) || -> Mortal(U)*.
SPASS V 1.0.0
SPASS beiseite: Proof found.
Problem: sokrates1.dfg
SPASS derived 1 clauses, backtracked 0 clauses and kept 4 clauses.
SPASS allocated 438 KBytes.
SPASS spent 0:00:00.12 on the problem.
 0:00:00.02 for the input.
 0:00:00.02 for the FLOTTER CNF translation.
 0:00:00.00 for inferences.

 0:00:00.00 for the backtracking.
 0:00:00.00 for the reduction.

When called with default settings, SPASS does not output a proof. To get a proof, enter the option
-DocProof in the options field of the WebSPASS interface and then the output will contain in
addition the following proof

Here is a proof with depth 1, length 5 :
1[0:Inp] || -> Human(sokrates)*.
2[0:Inp] || Mortal(sokrates)* -> .
3[0:Inp]Human(U) || -> Mortal(U)*.
4[0:Res:3.1,2.0]Human(sokrates) || -> .
5[0:ClR:4.0,1.0] || -> .
Formulae used in the proof : 1 3 2

where clause 4 is the result of a resolution step between the clauses 3 and 2 and the empty clause,
clause 5 is obtained via clause reduction from clauses 4 and 1. The numbers given after Formulae

used in the proof refer to the numbering of formulae in the SPASS input file. For further
options consider our options help page.

Home / Research Units / AG 2: Home Page / Projects / SPASS Home Page | Tutorial | Top of page

Max-Planck-Institut für Informatik
About the Institute | Research Units | News & Activities | Coordinates | Directory | Services |

Search the Site | Intranet

Copyright © 1998-1999 by Max-Planck-Institut für Informatik. All rights reserved.
www site design and concept by Uwe Brahm · <webmaster@mpi-sb.mpg.de>

Document last changed on Monday, 04 October 99 - 16:41

