
SWI-Prolog Source Documentation
Version 2

Jan Wielemaker
VU University, Amsterdam

The Netherlands
E-mail: J.Wielemaker@vu.nl

March 19, 2014

Abstract

This document presents PlDoc, the SWI-Prolog source-code documentation infrastructure.
PlDoc is loosely based on JavaDoc, using structured comments to mix documentation with source-
code. SWI-Prolog’s PlDoc is entirely written in Prolog and well integrated into the environment.
It can create HTML+CSS and LATEX documentation files as well as act as a web-server for the
loaded project during program development.

The SWI-Prolog website (http:www.swi-prolog.org) is written in Prolog and inte-
grates PlDoc to provide a comprehensive searchable online manual.

Version 2 of PlDoc extends the syntax with Markdown markup as specified by Docygen.
Based on experience with version 1, PlDoc 2 both tightens some rules to avoid misinterpretations
and relaxes others that were considered too conservative.

1

Contents

1 Introduction 3

2 Overview 3

3 Structured comments 3

4 File (module) comments 4

5 Type and mode declarations 5

6 Tags: @see, etc. 6

7 Wiki notation 7
7.1 Structuring conventions . 7
7.2 Text markup: fonts and links . 10

7.2.1 Empahizing text . 10
7.2.2 Inline code . 10
7.2.3 Links . 11

7.3 Images . 11

8 Directory indices 11

9 Documentation files 12

10 Running the documentation system 12
10.1 During development . 12
10.2 As a manual server . 13
10.3 Using the browser interface . 14

10.3.1 Searching . 14
10.3.2 Views . 14
10.3.3 Editing . 14

10.4 library(doc files): Create stand-alone documentation files 15
10.5 Including PlDoc in a LaTeX document . 16

10.5.1 Predicate reference for the LaTeX backend 16

11 Motivation of choices 17

12 Compatibility and standards 19

2

1 Introduction

When developing Prolog source that has to be maintained for a longer period or is developed by a
—possibly distributed— team some basic quality mechanisms need to be adopted. A shared and well
designed codingstyle [Covington et al., 2012] is one of them. In addition, documentation of source-
files and their primary interfaces as well as a testing framework must be established.

In our view, hitherto existing documentation and testing frameworks fell short realising the basic
needs in a lightweight and easy to adopt system. To encourage consistent style, well commented code
and test-assisted development, we make sure that

• The documentation and testing framework requires a minimum of work and learning.

• The framework is immediately rewarding to the individual programmer as well as the team,

First, we describe the documentation system we developed for SWI-Prolog. In section 11 we
motivate our main choices.

2 Overview

Like JavaDoc, the PlDoc infrastructure is based on structured comments. Using comments, no changes
have to be made to Prolog to load the documented source. If the pldoc library is loaded, Prolog will
not only load the source, but also parse all structured comments. It processes the mode-declarations
inside the comments and stores these as annotations in the Prolog database to support the test frame-
work and other runtime and compiletime analysis tools that may be developed in the future.

Documentation for all or some of the loaded files can be written to file in either HTML+CSS
or LATEX (see section 10.5) format. Each source file is documented in a single file. In addition, the
documentation generator will generate an index file that can be used as an index for a browser or input
file for LATEX for producing nicely typeset document.

To support the developer, the documentation system can be asked to start a web-server that can be
used to browse the documentation.

3 Structured comments

Structured comments come in two flavours, the line-comment (%) based one, seen mostly in the
Prolog community and the block-comment (/*. . .*/) based one, commonly seen in the Java and C
domains. As we cannot determine the argument names, type and modes from following (predicate)
source itself, we must supply this in the comment.1 The overall structure of the comment therefore is:

• Semi-formal type- and mode-description, see section 5

• Wiki-style documentation body, see section 7

• JavaDoc style tags (@keyword value, see section 6)

The /*. . .*/ style comment starts with /**〈white〉. The type and mode declarations start at the
first non-blank line and are ended by a blank line.

1See section 11.

3

The %-style line comments start with %!〈white〉 or, for compatibility reasons, with %%〈white〉.2
The type and mode declaration is ended by the first line that starts with a single %. E.g., the following
two fragments are identical wrt. PlDoc. Skipping blank-lines in /** comments allows to start the
comment on the second line.

%! predicate(-Arg:type) is nondet
% Predicate ...

/**
* predicate(-Arg:type) is nondet

*
* Predicate ...

*/

The JavaDoc style keyword list starts at the first line starting with @〈word〉.

4 File (module) comments

An important aspect is documentation of the file or module as a whole, explaining its design, purpose
and relation to other modules. In JavaDoc this is the comment that preceeds the class definition.
The Prolog equivalent would be to put the module comment in front of the module declaration. The
module declaration itself however is an important index to the content of the file and is therefore best
kept first.

The general comment-structure for module comments is to use a type identifier between angled
brackets, followed by the title of the section. Currently the only type provided is module. Other
types may be added later.

Example

/** <module> Prolog documentation processor

This module processes structured comments and generates both formal
mode declarations from them as well as documentation in the form of
HTML or LaTeX.

@author Jan Wielemaker
@license GPL

*/

2The %% leader was considered to give too many false positives on arbitrary source code. It is still accepted, but invalid
comments are silently ignored, while invalid comments that start with %! result in a warning.

4

5 Type and mode declarations

The type and mode declaration header consists of one or more Prolog terms. Each term describes a
mode of the predicate. The syntax is informally described below:

〈modedef〉 ::= 〈head〉[’//’] ’is’ 〈determinism〉
| 〈head〉[’//’]

〈determinism〉 ::= ’det’
| ’semidet’
| ’failure’
| ’nondet’
| ’multi’

〈head〉 ::= 〈functor〉’(’¡argspec¿ ’,’ 〈argspec〉’)’
| 〈functor〉

〈argspec〉 ::= [〈instantiation〉]〈argname〉[’:’¡type¿]
〈instantiation〉 ::= ’+’ | ’-’ | ’?’ | ’:’ | ’@’ | ’!’
〈type〉 ::= 〈term〉

The determinism values originate from Mercury. Their meaning is explained in the table be-
low. Informally, det is used for deterministic transformations (e.g. arithmetic), semidet for tests,
nondet and multi for generators. The failure indicator is rarely used. It mostly appears in
hooks or the recovery goal of catch/3.

Determinism Predicate behaviour
det Succeeds exactly once without a choice point
semidet Fails or Succeeds exactly once without a choice-point
failure Always fails
nondet No constraints on the number of times the predicate succeeds and

whether or not it leaves choice-points on the last success.
multi As nondet, but succeeds at least one time.

Instantiation patterns are:

+ Argument must be fully instantiated to a term that satisfies the type.
- Argument must be unbound.
? Argument must be bound to a partial term of the indicated type. Note

that a variable is a partial term for any type.
: Argument is a meta-argument. Implies +.
@ Argument is not further instantiated.
! Argument contains a mutable structure that may be modified using

setarg/3 or nb setarg/3.

In the current version types are represented by an arbitrary term without formal semantics. In
future versions we may adopt a formal type system that allows for runtime verification and static type
analysis [Hermenegildo, 2000, Mycroft & O’Keefe, 1984, Jeffery et al., 2000]

5

Examples

%! length(+List:list, -Length:int) is det.
%! length(?List:list, -Length:int) is nondet.
%! length(?List:list, +Length:int) is det.
%
% True if List is a list of length Length.
%
% @compat iso

6 Tags: @see, etc.

Optionally, the description may be followed by one or more tags. Our tag convention is strongly based
on the conventions used by javaDoc. It is adviced to place tags in the order they are described below.

@arg Name Description
Defines the predicate arguments. Each argument has its own @arg tag. The first word is the
name of the argument. The remainder of the tag is the description. Arguments declarations
normally appear in order used by the predicate.

@param Name Description
This is a synonym for @arg, using the JavaDoc tag name.

@throws Term Description
Error condition. First Prolog term is the error term. Remainder is the description.

@error Error Description
As @throws, but the exception is embedded in error(Error, Context).

@author Name
Author of the module or predicate. Multiple entries are used if there are multiple authors.

@version Version
Version of the module. There is no formal versioning system.

@see Text
Point to related material. Often contains links to predicates or files.

@deprecated Alternative
The predicate or module is deprecated. The description specifies what to use in new code.

@compat Standards and systems
When implementing libraries or externally defined interfaces this tag describes to which stan-
dard the interface is compatible.

@copyright Copyright holder
Copyright notice.

@license License conditions
License conditions that apply to the source.

6

@bug Bug description
Known problems with the interface or implementation.

@tbd Work to be done
Not yet realised behaviour that is enticipated in future versions.

7 Wiki notation

Structured comments that provide part of the documentation are written in Wiki notation, based on
TWiki, with some Prolog specific additions.

7.1 Structuring conventions

Paragraphs Paragraphs are seperated by a blank line. Paragraphs that are indented in the source-code
after normalising the left-margin are also indented in the output. Indentation is realised in the
HTML backend using a blockquote element and in LATEX using the quote environment.
Finally, if the initial indentation is 16 or more, the paragraph is centered.

General lists The wiki knows three types of lists: bullet lists (HTML ul), numbered lists (HTML
ol) and description lists (HTML dl). Each list environment is headed by an empty line and
each list-item has a special symbol at the start, followed by a space. Each subsequent item must
be indented at exactly the same column. Lists may be nested by starting a new list at a higher
level of indentation. The list prefixes are:

* Bulleted list item
1. Numbered list item. Any number from 1..9 is allowed, which al-

lows for proper numbering in the source. Actual numbers in the
HTML or LATEX however are re-generated, starting at 1.

$ Title : Item Description list item.

Term lists Especially when describing option lists or different accepted types, it is common to de-
scribe the behaviour on different terms. Such lists must be written as below. 〈Term1〉, etc. must
be valid Prolog terms and end in the newline. The Wiki adds ’ . ’ to the text and reads it
using the operator definitions also used to read the mode terms. See section 5. Variable names
encountered in the Term are used for indentifying variables in the following Description. At
least one Description must be non-empty to avoid confusion with a simple item list.

* Term1
Description

* Term2
Description

Predicate description lists Especially for processing Wiki files, the Wiki notation allows for includ-
ing the description of a predicate ‘in-line’, where the documentation is extracted from a loaded
source file. For example:

7

The following predicates are considered Prolog’s prime list processing
primitives:

* [[member/2]]

* [[append/3]]

Tables The Wiki provides only for limited support for tables. A table-row is started by a | sign and
the cells are separated by the same character. The last cell must be ended with |. Multiple lines
that parse into a table-row together form a table. Example:

Algorithm	Time (sec)
Depth first	1.0
Breath first	0.7
A*	0.3

Section Headers Section headers are creates using one of the constructs below taken from TWiki.
Section headers are normally not used in the source-code, but can be useful inside README
and TODO files. See section 8.

---+ Section level 1
---++ Section level 2
---+++ Section level 3
---++++ Section level 4

In addition, PlDoc recognises the markdown syntax, including named sections as defined by
doxygen. A section is named (labeled) using an optional sequence {\#name}. The three
code sections below provide examples. Note that # section headers should be positioned at
the left margin and the # must be followed by blank space. If the header is underlined, the
underline is a line that only contains = or - characters. There must be a minimum of three3 of
such characters.

Section level 1
===============

Section level 2

Section level 1
Section level 2
Section level 3
Section level 4

3Markdown demands two, but this results in ambiguities with the == fence for code blocks.

8

Section level 1 {#label}
===============

Section level 1 {#label}

Code blocks There are two ways to write a code block. The first one is fenced. Here, the block
is preceeded and followed by a fence line. The traditional PlDoc fence line is ==. Doxygen
fence lines are also accepted. They contain at least three tilde (˜) characters, where the opening
fence line may be followed by a file extension between curly brackets. In all cases, the code is
indented relative to the indentation of the fence line. Below are two examples, the first being the
traditional PlDoc style. The second is the Doxygen style, showing a code block that is indented
(because it is a body fragment) and that is flagged as Prolog source. Note that the {.pl} is
optional.

==
small(X) :-

X < 2.
==

˜˜˜{.pl}
...,
format(’Hello ˜w˜n’, [World]),
...,

˜˜˜

The second form of code blocks are indented blocks. Such a block must be indented between
4 and 8 characters, relative to the indentation of the last preceeding non-blank line. The block
is opened with a blank line and closed by a blank line or a line that is indented less than the
indentation of the initial line. It is allowed to have a single blank line in the middle of a code
block, provided that the next line is again indented at least as much as the initial line. The initial
line as well as a line that follows a blank line may not be a valid list opening line or a table row,
i.e., it may not start with one of *- followed by a space or |.

Rulers PlDoc accepts both the original PlDoc and markdown conventions for rulers. A PlDoc ruler
is a line with at least two dashes (-) that starts at the left-most column. A markdown ruler
holds at least three ruler characters and any number of spaces. The ruler characters are the dash
(-), underscore (_) or asterisk (*). Below are three examples, the last two of which are valid
markdown.

--

- - -

9

bold Typeset text in bold for limited content (see running text).
|bold| Typeset text in bold. Content can be long.
emphasize Typeset text as emphasize for limited content (see running text).
|emphasize| Typeset text as emphasize. Content can be long.
=code= Typeset text fixed font for identifiers (see running text).
=|code|= Typeset text fixed font. Content can be long.
Word Capitalised words that appear as argument-name are written in Italic

Table 1: Wiki constructs to change the font

7.2 Text markup: fonts and links

7.2.1 Empahizing text

Text emphasis is a combination of old plaintext conventions in Usenet and E-mail and the doxygen
version of markdown. Table 1 shows the font-changing constructions. The phrase limited context
means that

• The opening * or must be preceeded by white space or a character from the set <{([,:; and
must be followed by an alphanumerical character.

• The closing * or may not be followed by an alphanumerical character and may not be pre-
ceeded by white space or a character from the set ({[<=+-\@.

• The scope of these operations is always limited to the identified structure (paragraph, list item,
etc.)

Note that =〈identifier〉= is limited to a an identifier, such as a file name, XML name, etc. Identifiers
must start and end with an alphanumerical character, while characters from the set .-/: may appear
internally. Note that this set explicitly does not allow for white space in code spans delimited by a
single =. This markup is specifically meant to deal with code that is either not Prolog code or invalid
Prolog code. Valid Prolog code should use the backtick as described in section 7.2.2.

7.2.2 Inline code

Inline code can be realised using the = switch described in section 7.2.1 or the markdown backtick.
In addition, it can use the mardown/Doxygen backtick (‘) convention: a string that is delimited by
backticks is considered code, provided:

• An internal double backtick is translated into a single backtick.

• Inline code is limited to the current structure (paragraph, table cell, list item, etc.

• The content of the code block is valid Prolog syntax. Note that in Doxygen, the syntax is not
validated and a single quote cancels the recognition as code. The latter is a problematic in
Prolog because single quotes are often required.

Currently, ‘Var‘ is typeset as a variable (italics) and other terms are typeset using a fixed-width
code font.

In addition, compound terms in canonical notation (i.e., functor(,...args...) that can be parsed are
first verified as a file-specification for absolute file name/3 and otherwise rendered as code.

10

name/arity Create a link to a predicate
name//arity Create a link to a DCG rule
name.ext If 〈name〉.〈ext〉 is the name of an existing file and 〈ext〉 is one of .pl,

.txt, .md, .png, .gif, .jpeg, .jpg or .svg, create a link to the
file.

prot://url If 〈prot〉 is one of http, https or ftp, create a link.
<url> Create a hyperlink to URL. This construct supports the

expand url path/2 using the construct 〈alias〉:〈local〉. 〈local〉
can be empty.

[[label][link]] Create a link using the given 〈label〉. Label can be text or a ref-
erence to an image file. Additional arguments can be supplied as
;〈name〉="〈value〉". More arguments are separated by commas. 〈link〉
must be a filename as above or a url.

[label](link) The markdown version of the above.

Table 2: Wiki constructs that create links

7.2.3 Links

Table 2 shows the constructs for creating links.

7.3 Images

Images can be included in the documentation by referencing an image file using one of the extensions
.gif, .png, .jpeg, .jpg or .svg.4 By default this creates a link to the image file that must be
visited to see the image. Inline images can be created by enclosing the filename in double square
brackets. For example

The [[open.png]] icon is used open an existing file.

The markdown alternative for images is also supported, and looks as below. The current implementa-
tion only deals with image files, not external resources.

![Caption](File)

8 Directory indices

A directory index consists of the contents of the file README (or README.TXT), followed by a
table holding all currently loaded source-files that appear below the given directory (i.e. traversal is
recursive) and for each file a list of public predicates and their descriptive summary. Finally, if a file
TODO or TODO.TXT exists, its content is added at the end of the directory index.

4SVG images are included using the object element. This is supported by many modern browsers. When using IE,
one needs at least IE9.

11

9 Documentation files

Sometimes it is desirable to document aspects of a package outside the source-files. For this reason
the system creates a link to files using the extension .txt. The referenced file is processed as Wiki
source. The two fragments below illustrate the relation between an .pl file and a .txt file.

%! read_setup(+File, -Setup) is det.
%
% Read application setup information from File. The details
% on setup are described in setup.txt.

---+ Application setup data

If a file =|.myapprc|= exists in the user’s home directory the
application will process this data using setup.pl. ...

10 Running the documentation system

10.1 During development

To support the developer with an up-to-date version of the documentation of both the application
under development and the system libraries the developer can start an HTTP documentation server
using the command doc server(?Port). A good way to deploy PlDoc for program development is
to write a file called e.g., debug.pl that sets up the preferred development environment and loads
your program. below is an example debug.pl that starts PlDoc and prints strings as text before
loading the remainder of your program.

:- doc_server(4000). % Start PlDoc at port 4000
:- portray_text(true). % Enable portray of strings

:- [load]. % load your program

doc collect(+Bool)
Enable/disable collecting structured comments into the Prolog database. See doc server/1
or doc browser/0 for the normal way to deploy the server in your application. All these
predicates must be called before loading your program.

doc server(?Port)
Start documentation server at Port. Same as doc server(Port, [allow(localhost), work-
ers(1)]). This predicate must be called before loading the program for which you consult the
documentation. It calls doc collect/1 to start collecting documentation while (re-)loading
your program.

doc server(?Port, +Options)
Start documentation server at Port using Options. Provided options are:

12

root(+Path)
Defines the root of all locations served by the HTTP server. Default is /. Path must be
an absolute URL location, starting with / and ending in /. Intented for public services
behind a reverse proxy. See documentation of the HTTP package for details on using
reverse proxies.

edit(+Bool)
If false, do not allow editing, even if the connection comes from localhost. Intended
together with the root option to make pldoc available from behind a reverse proxy. See
the HTTP package for configuring a Prolog server behind an Apache reverse proxy.

allow(+HostOrIP)
Allow connections from HostOrIP. If Host is an atom starting with a ’.’, suffix matching
is preformed. I.e. allow(’.uva.nl’) grants access to all machines in this domain.
IP addresses are specified using the library(socket) ip/4 term. I.e. to allow access from
the 10.0.0.X domain, specify allow(ip(10,0,0,_)).

deny(+HostOrIP)
Deny access from the given location. Matching is equal to the allow option.

Access is granted iff

• Both deny and allow match
• allow exists and matches
• allow does not exist and deny does not match.

doc browser
Open the user’s default browser on the running documentation server. Fails if no server is
running.

doc browser(+Spec)
Open the user’s default browser on the specified page. Spec is handled similar to edit/1,
resolving anything that relates somehow to the given specification and ask the user to select.5.

10.2 As a manual server

The library pldoc/doc library defines doc load library/0 to load the entire library.

doc load library
Load all library files. This is intended to set up a local documentation server. A typical scenario,
making the server available at port 4000 of the hosting machine from all locations in a domain
is given below.

:- doc_server(4000,
[allow(’.my.org’)
]).

:- use_module(library(pldoc/doc_library)).
:- doc_load_library.

Example code can be found in $PLBASE/doc/packages/examples/pldoc.
5BUG: This flexibility is not yet implemented

13

10.3 Using the browser interface

The documentation system is normally accessed from a web-browser after starting the server using
doc server/1. This section briefly explains the user-interface provided from the browser.

10.3.1 Searching

The top-right of the screen provides a search-form. The search string typed is searched as a substring
and case-insensitive. Multiple strings seperated by spaces search for the intersection. Searching for
objects that do not contain a string is written as -〈string〉. A search for adjacent strings is specified as
"〈string〉". Here are some examples:

load file Searches for all objects with the strings load and file.
load -file Searches for objects with load, but without file.
"load file" Searches for the string load file.

The two radio-buttons below the search box can be used to limit the search. All searches both the
application and manuals. Searching for Summary also implies Name.

10.3.2 Views

The web-browser supports several views, which we briefly summarise here:

• Directory
In directory-view mode, the contents of a directory holding Prolog source-files is shown file-
by-file in a summary-table. In addition, the contents of the README and TODO files is given.

• Source File
When showing a Prolog source-file it displays the module documentation from the
/** <module ... */ comment and the public predicates with their full documentation.
Using the zoom button the user can select to view both public and documentated private pred-
icates. Using the source button, the system shows the source with syntax highlighting as in
PceEmacs and formatted structured comments.6

• Predicate
When selecting a predicate link the system presents a page with the documentation of the pred-
icate. The navigation bar allows switching to the Source File if the documentation comes from
source or the containing section if the documentation comes from a manual.

• Section
Section from the manual. The navigation bars allows viewing the enclosing section (Up).

10.3.3 Editing

If the browser is accessed from localhost, each object that is related to a known source-location
has an edit icon at the right side. Clicking this calls edit/1 on the object, calling the user’s de-
fault editor in the file. To use the built-in PceEmacs editor, either set the Prolog flag editor to
pce emacs or run ?- emacs. before clicking an edit button.

6This mode is still incomplete. It would be nice to add line-numbers and links to documentation and definitions in the
sources.

14

Prolog source-files have a reload button attached. Clicking this reloads the source file if it was
modified and refreshes the page. This supports a comfortable edit-view loop to maintain the source-
code documentation.

10.4 library(doc files): Create stand-alone documentation files
To be done Generate a predicate index?

Create stand-alone documentation from a bundle of source-files. Typical use of the PlDoc package
is to run it as a web-server from the project in progress, providing search and guaranteed consistency
with the loaded version. Creating stand-alone files as provided by this file can be useful for printing
or distribution.

doc save(+FileOrDir, +Options)
Save documentation for FileOrDir to file(s). Options include

format(+Format)
Currently only supports html.

doc root(+Dir)
Save output to the given directory. Default is to save the documentation for a file in the
same directory as the file and for a directory in a subdirectory doc.

title(+Title)
Title is an atom that provides the HTML title of the main (index) page. Only meaningful
when generating documentation for a directory.

man server(+RootURL)
Root of a manual server used for references to built-in predicates. Default is
http://www.swi-prolog.org/pldoc/

index file(+Base)
Filename for directory indices. Default is index.

if(Condition)
What to do with files in a directory. loaded (default) only documents files loaded into
the Prolog image. true documents all files.

recursive(+Bool)
If true, recurse into subdirectories.

css(+Mode)
If copy, copy the CSS file to created directories. Using inline, include the CSS file
into the created files. Currently, only the default copy is supported.

The typical use-case is to document the Prolog files that belong to a project in the current direc-
tory. To do this load the Prolog files and run the goal below. This creates a sub-directory doc
with an index file index.html. It replicates the directory structure of the source directory,
creating an HTML file for each Prolog file and an index file for each sub-directory. A copy of
the required CSS and image resources is copied to the doc directory.

?- doc_save(., [recursive(true)]).

15

doc pack(+Pack)
Generate stand-alone documentation for the package Pack. The documentation is generated
in a directory doc inside the pack. The index page consists of the content of readme or
readme.txt in the main directory of the pack and an index of all files and their public
predicates.

10.5 Including PlDoc in a LaTeX document

The LaTeX backend aims at producing quality paper documentation as well as integration of predicate
description and Wiki files in LaTeX documents such as articles and technical reports. It is realised by
the library doc_latex.pl.

The best practice for using the LaTeX backend is yet to be established. For now we anticipate
processing a Wiki document saved in a .txt file using doc latex/3 to produce either a simple
complete LaTeX document or a partial document that is included into the the main document using
the LaTeX \input command. Typically, this is best established by writing a Prolog Script that
generates the required LaTeX document and call this from a Makefile. We give a simple example
from PlDoc, creating this section from the wiki-file latex.txt below.

:- use_module(library(doc_latex)).
:- [my_program].

We generate latex.tex from latex.txt using this Makefile fragment:

.SUFFIXES: .txt .tex

.txt.tex:
swipl -f script.pl \

-g "doc_latex(’$*.txt’,’$*.tex’,[stand_alone(false)]),halt" \
-t "halt(1)"

10.5.1 Predicate reference for the LaTeX backend

High-level access is provided by doc latex/3, while more low level access is provided by the
remaining predicates. Generated LaTeX depends on the style file pldoc.sty, which is a plain
copy of pl.sty from the SWI-Prolog manual sources. The installation installs pldoc.sty in the
pldoc subdirectory of the Prolog manual.

doc latex(+Spec, +OutFile, +Options) [det]

Process one or more objects, writing the LaTeX output to OutFile. Spec is one of:

Name / Arity
Generate documentation for predicate

Name // Arity
Generate documentation for DCG rule

File
If File is a prolog file (as defined by user:prolog file type/2), process using
latex for file/3, otherwise process using latex for wiki file/3.

16

Typically Spec is either a list of filenames or a list of predicate indicators. Defined options are:

stand alone(+Bool)
If true (default), create a document that can be run through LaTeX. If false, produce
a document to be included in another LaTeX document.

public only(+Bool)
If true (default), only emit documentation for exported predicates.

section level(+Level)
Outermost section level produced. Level is the name of a LaTeX section command.
Default is section.

summary(+File)
Write summary declarations to the named File.

latex for file(+File, +Out, +Options) [det]

Generate a LaTeX description of all commented predicates in File, writing the LaTeX text to the
stream Out. Supports the options stand_alone, public_only and section_level.
See doc latex/3 for a description of the options.

latex for wiki file(+File, +Out, +Options) [det]

Write a LaTeX translation of a Wiki file to the steam Out. Supports the options stand_alone,
public_only and section_level. See doc latex/3 for a description of the options.

latex for predicates(+PI:list, +Out, +Options) [det]

Generate LaTeX for a list of predicate indicators. This does not produce the
\begin{description}...\end{description} environment, just a plain list of \predicate, etc.
statements. The current implementation ignores Options.

11 Motivation of choices

Literal programming is an established field. The TEX source is one of the first and best known exam-
ples of this approach, where input files are a mixture of TEX and PASCAL source. External tools are
used to untangle the common source and process one branch to produce the documentation, while the
other is compiled to produce the program.

A program and its documentation consists of various different parts:

• The program text itself. This is the minimum that must be handed to the compiler to create an
executable (module).

• Meta information about the program: author, modifications, license, etc.

• Documentation about the overall structure and purpose of the source.

• Description of the interface: public predicates, their types, modes and whether or not they are
deterministic as wel as an informative text on each public predicate.

• Description of key private predicates necessary to understand how the public interface is re-
alised.

17

Structured comments or directives

Comments can be added through Prolog directives, a route taken by Ciao Prolog with lpdoc
[Hermenegildo, 2000] and Logtalk [Moura, 2003]. We feel structured comments are a better alter-
native for the following reasons:

• Prolog programmers are used to writing comments as Prolog comments.

• Using Prolog strings requires unnatural escape sequences for string quotes and long literal val-
ues tend to result in hard to find quote-mismatches. Python uses comments in long strings,
fixing this problem using a three double quotes to open and close long comments.

• Comments should not look like code, as that makes it more difficult to find the actual code.

We are aware that the above problems can be dealt with using syntax-aware editors. Only a few
editors are sufficiently powerful to support this correctly though and we do not expect the required
advanced modes to be widely available. Using comments we do not need to force users into using a
particular editor.

Wiki or HTML

JavaDoc uses HTML as markup inside the structured comments. Although HTML is more widely
known than —for example— LATEX or TeXinfo, we think the Wiki approach is sufficiently widely
known today. Using text with minimal layout conventions taken largely from plaintext newsnet and
E-mail, Wiki input is much easier to read in the source-file than HTML without syntax support from
an editor.

Types and modes

Types and modes are not a formal part of the Prolog language. Nevertheless, their role goes beyond
pure documentation. The test-system can use information about non-determinism to validate that
deterministic calls are indeed deterministic. Type information can be used to analyse coverage from
the test-suite, to generate runtime type verification or to perform static type-analysis. We have chosen
to use a structured comment with formal syntax for the following reasons:

• As a comment, they stay together with the comment block of a predicate. We feel it is best to
keep documentation as close as possible to the source.

• As we parse them separately, we can pick up argument names and create a readable syntax
without introducing possibly conflicting operators.

• As a comment they do not introduce incompatibilities with other Prolog systems.

Few requirements

SWI-Prolog aims at platform independency. We want tools to rely as much as possible on Prolog itself.
Therefore, the entire infrastructure is written in Prolog. Output as HTML is suitable for browsing and
not very high quality printing on virtually all platforms. Output to LATEX requires more infrastructure
for processing and allows for producing high-quality PDF documents.

18

12 Compatibility and standards

Initially, the PlDoc wiki language was based on Twiki. Currently, markdown is a wiki syntax that
is widely accepted and not tight to a single system. In PlDoc 2, we have adopted markdown, in-
cluding many of the limitations and extensions introduced by Docygen. Limitations are needed to
avoid ambiguities due to the common use of symbol charaters in programming languages. Exten-
sions are desirable to make use of already existing conventions and support requirements of program
documentation.

Some of the changes in PlDoc 2 are to achieve compatibility with the Prolog Commons project.
The library documentation conventions of this project will be based on PlDoc and the Ciao lpdoc stan-
dards. It is likely that there will be more changes to the PlDoc format to synchronise with Commons.
We do not anticipate significant impact on existing documentation.

References

[Covington et al., 2012] Michael A. Covington, Roberto Bagnara, Richard A. O’Keefe, Jan
Wielemaker, Simon Price, and Simon Price. Coding guidelines for pro-
log coding guidelines for prolog. pages 889–927, 2012.

[Hermenegildo, 2000] Manuel V. Hermenegildo. A documentation generator for (c)lp systems.
In John W. Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber,
Kung-Kiu Lau, Catuscia Palamidessi, Luı́s Moniz Pereira, Yehoshua Sa-
giv, and Peter J. Stuckey, editors, Computational Logic, volume 1861 of
Lecture Notes in Computer Science, pages 1345–1361. Springer, 2000.

[Jeffery et al., 2000] David Jeffery, Fergus Henderson, and Zoltan Somogyi. Type classes in
mercury. In ACSC, pages 128–135. IEEE Computer Society, 2000.

[Moura, 2003] Paulo Moura. Logtalk - Design of an Object-Oriented Logic Program-
ming Language. PhD thesis, Department of Informatics, University of
Beira Interior, Portugal, September 2003.

[Mycroft & O’Keefe, 1984] Alan Mycroft and Richard A. O’Keefe. A polymorphic type system for
prolog. Artif. Intell., 23(3):295–307, 1984.

19

Index
absolute file name/3, 10

catch/3, 5

doc browser/0, 12, 13
doc browser/1, 13
doc collect/1, 12
doc latex/3, 16
doc load library/0, 13
doc pack/1, 16
doc save/2, 15
doc server/1, 12, 14
doc server/2, 12

edit/1, 13, 14
expand url path/2, 11

ip/4, 13

latex for file/3, 17
latex for predicates/3, 17
latex for wiki file/3, 17

nb setarg/3, 5

pldoc library, 3
pldoc/doc library library, 13

setarg/3, 5

20

	Introduction
	Overview
	Structured comments
	File (module) comments
	Type and mode declarations
	Tags: @see, etc.
	Wiki notation
	Structuring conventions
	Text markup: fonts and links
	Empahizing text
	Inline code
	Links

	Images

	Directory indices
	Documentation files
	Running the documentation system
	During development
	As a manual server
	Using the browser interface
	Searching
	Views
	Editing

	library(doc_files): Create stand-alone documentation files
	Including PlDoc in a LaTeX document
	Predicate reference for the LaTeX backend

	Motivation of choices
	Compatibility and standards

